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Abstract: Terrain attributes of watersheds with elevation influenced by tectonics and erosion processes in 
the Himalaya. It is inference from the present study that glacier processes have influenced the generation 
of the numbers of the watershed, mean slope, surface curvature, plan curvature, shape complex index, 
standard deviation and relief in higher altitude. The tectonic variability is reflected by the Hypsometric 
Integral (HI) and relief of the watersheds at tectonic boundaries. However, mean surface curvature, plan 
curvature and shape complexity Index of watersheds doesn’t show sensitivity towards tectonic variability. 
A sharpe increase in Plan curvature, Surface curvature and Shape complexity index values observed at 
altitude of 4200 m.a.s.l corresponding to glacier environment. High relief produced by glacier erosion 
near the permanent snow resulted in shadow in mountain valley during day time. Hence, low insolation 
causes slow de-glaciations processes and resulted in less sensitivity of big mountain valley glaciers 
towards climate warming. Relative intensity of the monsoon climate and global cooling by the glacial 
ages resulted in development of more southerly glacier basins in Himalaya.  
 
 
Keywords; Digital Terrain Modeling, SRTM DEM, Gemorphometry, Terrain analysis, Himachal 
Pradesh, Himalaya. 

 

 
1. INTRODUCTION 
 
Himalaya provides a unique natural laboratory 

to analyze the impact of geology, climate, erosion and 
tectonic forces impact on geomorphometric properties 
of the landscape. Hence, numerous field based studies 
have been made to develop such relationship between 
the tectonics and morphology in the Himalaya and 
various other tectonic zones by conventional methods 
e.g., river terrace study in river bank cross section, 
drilling, trenching, seismic profiling, and 
sedimentological studies, radiometric dating etc. 
(Thakur, 1995; Burbank & Anderson, 2001; Philip & 
Sah, 1999; Malik et al., 2003). These techniques are 
costly/time intensive and need the sampling, 
analyzing and confirmation. Therefore, terrain studies 
are few in numbers because of the rugged terrain and 
logistic problems. In compare to size and length of 
the Himalaya the large scale geomorphic studies are 
very limited due to absence of elevation information. 
The spatial information of elevation change is a prime 
requirement of the geomorphologic studies. 
Conventional elevation information is made available 
through scanned topographic map and GIS software 

various part of the earth. But the availability of DEM 
(Digital Elevation Model of the Himalaya region had 
problem to the scientific community till the release of 
the SRTM (Shuttle Radar Topographic mapping) 
DEM in 2003. Therefore, the topographic based DEM 
studies conducted in the Himalaya are few in numbers 
(Agarwal, 1998; Asthana, 2012; Mishra, 1988; Singh 
&Singh, 1997). Now the free availability of SRTM 
DEM provides a unique opportunity to visualize the 
terrain and calculate geomorphologic attributes by 
software. Tobias et al., (2005) and Tobias, (2004) 
have used ASTER and SRTM DEM for studying 
Glaciers/Rock Glaciers and Geomorphology in 
Northern Tien Shan and Hindukush region. Wang & 
Liao (2005) have used SRTM DEM data for the water 
volume analysis in some reservoirs of China. Fault 
associate landforms recognition and tectonics activity 
were marked by (Keller & Pinter 1996; Burbank & 
Anderson 2001; Oguchiet al., 2003; Szynkaruket al., 
2004; Grohmann et al., 2007). The elevation derived 
shadedmap and other terrain derivative maps(slope, 
aspect, Circulatory Ratio, Compactness factor and 
Hypsometric Integral etc.,) were also used to 
determine the factors responsible for 
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geomorphological characteristics of the watershed in 
the Himalaya (Biswas & Grasemann, 2005 ; Robl et 
al., 2008; Goswami et al., 2012; Romshoo et al., 2012 
Dortch et al., 2011; Amerson et al., 2008; Bali et al., 
2012; Malik & Mohanty, 2007, Mohanty et al., 2004; 
Jordan, 2003). These studies were mainly related to 
identification of active fault, impact of neotectonics 
on change in landform, geomorphometric 
characteristics on hydrology, relationship between 
tectonic, glaciations and climate interaction. But these 
studies were conducted in specific area. Whole basins 
have not been studied from the point of full view 
ranging lower to highest altitude with various 
interaction of geomorphologic agents with altitude, 
climate and tectonics. However, it is needed to study 
the whole of the mountain range from lowest to 
highest altitude in Himalaya to decipher the 
interaction of various geomorphic agent, altitude 
dependent processes, climate and tectonic processes 
on landscape in a single entity and continuity. In 
present study Chenab river basin was selected to 
analyze the impact of tectonic - climate - erosion on 
morphometric parameters of watersheds in the 
Himalaya.  
 

2. METHODOLOGY  
 

Morphometric analysis (Terrain Analysis) or 
geomorphometry is the practice of terrain modeling 
and ground surface quantification, through 
applications of earth sciences, mathematics, 
engineering, and computer science. Geographic 
Information Systems (GIS) and Digital Elevation 
Models (DEMs) allow speed, precision and 
reproducibility of calculation for morphometric 
parameters. The release of Shuttle Radar 
Topography Mission (SRTM) DEM data (Rabus et 
al., 2003) brought regional geomorphometery 
analysis in a fast and inexpensive mode. 

In this study, we have used Raster format of 
void filled SRTM DEM-90 meter resolution data set 
for the evaluation of the terrain characteristics of 

watersheds in Chenab basin. Data sets are freely 
available from NASA’s website. SRTM DEM data 
was imported to software (TAS) Terrain Analysis 
System, Version 2.9.0 and images for primary and 
secondary terrain attribute were prepared. The PCI – 
Geomatica V.9.1.0 was used to generate the 
automatic watershed boundaries using Hydrological 
modeling. The PCI, 9.1.0 software used these 
watershed and mean values were extracted for the 
terrain attributes of slope, aspect, surface curvature, 
Plan curvature, tangential curvature, profile 
curvature, mean altitude, standard deviation, relief, 
hypsometry integral, circulatory ratio (Table 1). 

 
3. STUDY AREA 

 
The study area covers the Chenab basin in 

parts of the state of Himachal Pradesh (Fig. 1) and 
covering lower, middle and higher Himalayas (320 
05΄N to 33018΄N and 76034΄E -76055΄). Fluvial and 
fluvial-glacial geomorphic processes dominate in 
watersheds in low and high altitude respectively in 
the study area. 

 
4. RESULTS  

 
The relative change in terrain of watershed 

characteristics with altitude is a reflection of the 
geomorphologic forces operating in particular 
altitude, basic rock types, structural and tectonic 
setup of the region and climate. It is observed that 
watersheds generate with low rate for the mean 
altitude ranging from 500- 2000 m.a.s.l and high rate 
of generation of watersheds was observed for the 
watershed with mean altitude ranging from 4000 
m.a.s.l and above. However, the rate of watershed 
generation don’t show any change in rate with 
altitude ranging from 2000- 3000 m.a.s.l (Fig. 2). 
The watersheds with mean altitude ranging from 
2000 -3000 are few in numbers due to old mature 
topography of the lesser Himalaya of Pre-cambrian 
age.

 
 

Table 1. Terrain parameters and their formulas 
Parameter Formulas 

Slope 0-90 in degree 
Aspect 0- 360 in degree 

Standard deviation √∑(x-x -)/n 
Relief Hmax -Hmin 

Hypsometric Integral Hmean -Hmin/Hmax-Hmin 
Circularity Ratio Re= 4π A/P2 

Shape complexity Index Perimeter/(2*sqrt(Area/PI)*PI 
Plan Curvature Index Second order polynomial (Zevenbergen & Thorn (1987) 

Surface curvature Index Second order polynomial(Zevenbergen & Thorn (1987) 
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Figure 1.Location map of the study area 
 

The watersheds with mean altitude ranging 
from 500 -2000 a.m.s.l, 3000-4000 m.a.s.l and 4000-
6000 m.a.s.l have mean standard deviation of 
elevation is 261m, 404m and 270 m respectively. It 
is evident that the watersheds with mean altitude 
more than 4000 m.a.s.l are part of glaciated terrain 
and exhibits the subdued terrain compare to non-
glaciated area and reflect in landscape (Millar, 
1997). The high standard deviation exhibit by 
watersheds with mean altitude 3000 – 4000 m.a.s.l is 
related to active central Himalayan thrust (MCT) in 
this altitude band (Fig. 3).  

 

 
Figure 2. Generation of the watersheds in the Chenab 

basin 
 

Average slopes of the watersheds with mean 
altitude ranging from 500 to 4000 m.a.s.l is 460 with 
standard deviation of 170. However, watersheds with 
mean altitude more than 4000 m.a.s.l have average 
slope of 480 with high degree of the standard 
deviation. Watersheds show high slope variability 

with altitude at 1500-2000 a.m.s.l, while the least 
variability is observed with watersheds have mean 
altitude between 2500 - 4500 m.a.s.l (Fig. 4). 
However, extreme values were observed for the 
watersheds with high attitude. 
 

 
Figure 3.Relationship between mean altitude and 

Standard Deviation (STD) of elevation within watersheds. 
 

The tectonic boundaries have important role in 
determining the aspect of the watershed. In the 
Chenab basin, most of the watersheds have mean 
aspect ranging from 100 – 3500 from North. 
Watersheds with mean altitude less than 4000 m.a.s.l 
show average aspect of 2130and high standard 
deviation of 580 from North. However, the watersheds 
with mean altitude of 4000 m.a.s.l and above have 
average aspect of 2030 and standard deviation 500 

from North (Fig. 5). It is observed that the aspects of 
the watersheds with mean altitude ranging from 1000 
– 2000 m.a.s.l changed suddenly compare to 
neighbors watersheds. This sudden change is possibly 
related to location of the MBT (Main Boundary 
Thrust) in Chenab basin. 
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Figure 4. Mean slope and altitude of the watersheds. 

 

 
Figure 5.Mean aspect and elevation of watersheds. 

 

 
Figure 6. Relief and mean altitude of watersheds. 

 
The relation between mean relief and 

watersheds′ mean altitude is presented in figure.6. It 
increases with altitude and attain maximum at 3500 
– 4500 m.a.s.l and decreases further as the altitude 
increases. The anomalies of the relief have been also 
observed for the watersheds with mean elevation 
ranging from 1500 - 2000 m.a.s.l as a reflection of 

MBT (Main Boundry Thrust) in the region. Extreme 
relief is associated with watersheds situating in 
attitude ranging from 4500 to 5000 a.m.s.l. The 
frequency analysis indicates that 75 % of watersheds 
have mean relief under the 1500 meter and only 25% 
of the watersheds have more relief than the 1500 
meter at higher altitude.  

Hypsometry index (HI) of watershed has been 
used to study the influence of varying forcing factors 
on watershed topography. Low hypsometric integral 
values indicate that there is a small proportion of 
total basin area in the high elevation category. With 
increasing drainage area the importance of fluvial 
processes increase and the hypsometric curve 
becomes more concave and the hypsometric integral 
approaches zero (Goudie, 2004). The mean HI of 
watersheds and altitude relationship is given in 
figure 7. It is evident from the graph that it increases 
with altitude up to 1500 -2000 m.a.s.l and consistent 
moderate value for the watersheds with mean values 
from 2000 - 3500 a.m.s.l. At high altitudes the 
watersheds have high values with higher variability. 
The variation of HI values of watersheds with 
altitude indicates the sudden high variability at the 
altitude of 1500 - 2000 m.a.s.l and 5000 - 6000 
a.m.s.l; these zones suggest tectonic and geomorphic 
boundaries respectively.  

 

 
Figure 7.HI (Hypsometric Integral) and mean altitude of 

the watersheds. 
 
The climatic, erosion and tectonic forces 

shape watershed and further the hydrology in region. 
The hydrological nature of the watersheds reflecte 
by Circulatory Ratio (CR). It is one of the important 
properties of the watershed and it varies between 0 
and 1 (Kale & Gupta, 2001). The results suggest that 
most of the watersheds′ CR is close to 0.49 and 0.60 
for the watersheds with mean altitude ranging from 
500 – 4000 m.a.s.l and 4000 - 6000 m.a.s.l 
respectively. The mean circulatory ratio shows high 
variability up to 2000 a.m.s.l. However, least 
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variability has been observed for the 2000- 3000 
m.a.s.l and again shows high variability at higher 
altitude (Fig. 8). The low variability for the altitude 
ranging from 2000 - 3000 m.a.s.l is due to the 
mature topography of lesser Himalaya. It indicates 
that the majority of the watersheds are varied in 
nature from elongated to circular form for the 
altitude band of 500 - 2000 a.m.s.l. The higher CR in 
higher altitude indicates that most of the watersheds 
have slightly elongated in this region. In high 
altitude area the circularity ratio has been enhanced 
by broadening of glacial valley during glacial 
movement. Therefore, the watersheds from time to 
time experience high peak water discharges due to 
bursting of the supra glacial and englacial water 
bodies (Chopra et al., 2005). Delineating the sub-
basins on the basis of higher values of these indices 
can becomes an important tool to decipher the areas 
prone to short high peak flows during flash floods 
(Bali et al., 2012). 

 

 
Figure 8. Relationship between CR (Circularity Ratio) 

and watersheds′ mean altitude. 
 

Mean Surface Curvature, Plan Curvature and 
Shape Complex Index (SCI) of the watersheds and 
mean altitude of watersheds relationships are 
presented in figure 9, 10, and 11. It shows that 
watersheds with mean altitude values ranging from 
500 meter to 4200 meter m.a.s.l have surface 
curvature values close to zero. At the altitude of 
4200 m.a.s.land above  onwards the surface 
curvature values become more positive revealing 
that the watersheds becomes more convex from the 
altitude of 4200 meter m.a.s.l and onwards. It 
indicated that the watersheds at lower altitude 
represent concave spur and convex spur at higher 
altitude. A sudden change in curvatures and shape 
complex index suggests a complex glacio/fluvial and 

tectonic active region. The convex spurs at higher 
altitude represent accumulation of materials along 
moraines in glaciated area.  

 

 
Figure 9. Mean Shape Complexity Index (SCI) and 

watersheds′ mean altitude. 
 

 
Figure 10. Watersheds′ mean surface curvature and mean 

altitude. 
 

5. DISCUSSION  
 
A comparative analysis of the watersheds 

characteristics along longitudinal cross section of 
Himalaya suggests that generation of the watersheds 
at high altitude is related to freeze and thaw 
processes which result in formation of local 
depression and further develop as watershed.  

However, fluvial processes at lower elevation 
involve the movements of water which assimilate 
the local depression and form the bigger and few 
watersheds in lower altitude compare to glacier 
regime at higher altitude. Maximum numbers of the 
watersheds development at 4000- 5000 m.a.s.l 
coincides with regional permanent snow line 
(Dobhal& Kumar, 1996). The snow freez/thaw 
processes help in initiating basins formation at this 
altitude zone. The study conducted by 
Brocklehurstet al., (2004) has also shown a change 
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in number of watersheds distribution from non-
glacial to glacial basin transition from eastern Sierra 
Nevada to California.  
 

 
Figure 11. Watersheds′ mean plan curvature and mean 

altitude. 
 

River-glacier as a geomorphic agents produce 
relief through weathering processes. The glacier is 
strong in plucking and erosion of the country rocks. 
Therefore, the standard deviation of the elevation 
distribution within watershed decreases as 4000 
m.a.s.l onwards and minimum standard deviation of 
elevation is observed for the watersheds situated at 
high at altitude. Watersheds’ relief increases with 
altitude only up to 4500m.a.s.l and afterword the 
relief is limited. The limitation of the high relief 
with altitude in the Himalaya is concur with 
Brozovic et al., (1997) observation and suggests that 
glaciations can limit relief up to some altitude near 
the Equilibrium Line Altitude (ELA). However, 
some extreme relief is associated with mean 
watersheds attitude ranging from 5000 m.a.s.l and 
above at high altitude due to cold climate of ridges 
and tectonic upliftment in the region. In glacier 
watershed the erosion by snow and ice at ELA help 
in bedrock erosion. It results in further uplifting of 
cirque region of glaciers and resulting high slopes in 
the watershed at higher altitude. Hill slopes of more 
than 450 tend to be eroded rapidly not only by 
shallow failure, but also by bedrock erosion as 
observed by Burbank et al., (1996). Higher slope of 
watersheds at high altitude subject to cold glaciers 
activity (Bishop et al., 2003). At higher altitude the 
periglacial and glacial activity results in lowering of 
the slope of the watersheds in active upliftment area 
which also caused high convex profile and surface 
curvature (Katsube & Takashi1999). In concurrent 
of these finding the surface, plan curvature and 
shape of watersheds do not show and systematic 

change along the altitude except high values and 
high variability at 4500 – 5000 m.a.s.l corresponding 
to ELAs and limits of the glacier basins′ erosion at 
high altitude. The high relief along with high slope 
generated by glacier erosion near snowline plays an 
important role in glaciations processes; it helps in 
snow accumulation and mobilization as avalanches 
and contributes to the glacier mass. High relief also 
creates shadows on glacier surface which inhibit the 
direct solar radiation on glacier surface and results in 
slow de-glaciation processes in high relief areas. 
Studies conducted by (Ahmad & Islam, 2011; 
Rathore, et al., 2009) show that the frontal valley 
glaciers show higher degrees of de-glaciation, while 
inner valley glaciers e. g., Gangotri, Pin-Parbati 
glacier show less rate of de-glaciations. The Glacier 
mass balance study conducted by (Julie et al., 2012), 
in Nanga Parbat also showed that the glaciers 
situated in high relief areas are either stable or minor 
thickening. Nanga Parbat area has highest relief in 
Himalaya, hence they are least affected by global 
warming than the glaciers situated in low relief 
areas. The snow and ice mass gain by these glaciers 
in recent is probably through warmed avalanches on 
glacier surface which might have led to positive 
glacier mass balance in recent years.  

The more removal of material from the basins 
through glacier transport along with incision by the 
drainage resulted in imbalance of Iso-static forces 
and resulted in high relief in higher Himalaya 
(Molnar & England, 1990). The terrain attributes 
impact on weathering rate and hence, the 
relationship between altitude and weathering is also 
assessed. It indicated that the material excavation 
and transportation increases with altitude (Fig.12).  

 

 
Figure 12. Average material removal from the watersheds 

in different altitude bands. 
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which is more powerful agent of excavating the 
material from the watersheds. It has shown that 
maximum removal of rock material taken place at 
2500 - 3500 a.m.s.l, which is near the regional ELA 
observed in Last Glacial Maxima period (Owen et 
al., 2002; Berthier et al., 2007). The average rock 
removal by each watershed is almost double in 
glacier activity zone than the watershed located in 
fluvial dominated area with mean altitude 500 – 
2500 a.m.s.l. It indicated that the glacial processes 
operated since Pleistocene period have played a 
crucial role in shaping the Himalaya (Owen et al., 
1995; Owen et al., 2002; Yang et al., 2002). 

The watersheds characteristics in the 
Himalayas are influenced by the aspect due to snow 
storage, ice sensitivity to solar energy and direction 
of monsoonal precipitation. It is observed that the 
watersheds at higher Himalaya are more southerly 
than watersheds in lower altitude. Southern aspects 
of watersheds receive more energy from sun and 
also more precipitation from South West Indian 
monsoon. Therefore, high monsoon activity has led 
to more erosion on southern faces and fully 
development of the big watersheds in non glacial 
periods. The studies also suggested that glaciers 
situated in central and eastern Himalaya receive 
substantial precipitation during the summer 
monsoon (Fujita & Ageta, 2000). However, 
development of the glacier due to increased summer 
precipitation is considered minimal because 
monsoon intensity was reduced at Last Glacial 
Maxima time in Pleistocene period. In this period 
increased winter, westerly precipitation also did not 
provided the sufficient snow to expand the glacier in 
western Himalaya (Benn & Owen, 1998). Therefore, 
development and expansion of southern and eastern 
face glaciers in the Himalaya have resulted from 
regional cooling, which reduced ablation during the 
summer period and accumulation of monsoon snow 
protected the winter snowfall in ablation areas. Thus, 
effective precipitation has been increased, resulting 
in positive glacier mass balances and development 
of new glacier or advancement in Last Glacial 
Maxima in the old fluvial watersheds. 

The active upliftment of Himalaya due to 
glacier erosion at ELA (Molnar & England, 1990), 
extrusive flow of Tibet to South (Burchfielet al., 
1992) and Northward migration forces shaping the 
watersheds in the Himalaya. These forces are 
reflected in sudden change in HI and relief. The low 
HI ratio in lower basins is related to fluvial activity, 
which has deepened the valley. While, at higher 
altitude high HI values are related to glacial activity, 
resistant bedrock and active tectonics. The variation 
of watersheds′ HI ratio and relief with altitude 

indicated the sudden change at the altitude of 1500 - 
2000 m.a.s.l and high variability at 4000 - 4500 
m.a.s.l onwards indicated zones of tectonic –climatic 
boundaries and tectonic adjustment due to mass 
removal of glacier activity near the permanent 
snowline.  

 
6. CONCLUSIONS  

 
Systematic change of terrain attributes of 

watersheds at various altitudes present a synergic 
interaction of geomorphologic forces and tectonic-
structural setup of the region. The glacier and 
periglacial processes generate numerous small 
basins and show comparatively less standard 
deviation of elevation within basins. The synergetic 
of the glacier erosion and upliftment results in 
glaciers ‘controlled relief and slopes of the 
watersheds. High relief generation in glacier valley 
responsible for shadows on glacier surface which 
inhibit the direct solar radiation on glacier surface 
and results in slow de-glaciation processes of glacier 
in inner mountain valley.  

The glacier and non glacier glaciers 
watersheds processes results do not show any 
systematic change in surface curvature and plan 
curvature along the altitude except high variability at 
4200 m.a.s.land onwards at corresponding to ELAs 
and upper limit of the glacier basins. High variability 
of curvatures at higher altitude, slopes, relief 
resulted in high shape complexity index and 
consequently circulatory ratio result in variable 
hydrological, glaciological responses for a given 
climate changes.  
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