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Abstract; The study used methods based on remote sensing to evaluate the urban area of Timisoara City 
in relation to the climatic conditions. Satellite images were taken from the Landsat 8 system. The study 
interval was between August 9, 2013 and August 7, 2018. The images were taken in August, an expressive 
month in thermal aspect for the studied area. The spectral information from the satellite images was 
analyzed using specific indices, such as: Land Surface Temp - LST, Normalized Difference Built-Up Index 
– NDBI, and Normalized Difference Vegetation Index – NDVI, respectively. For the interpretation of the 
values of the indices, the climatic data were taken into account for the period January - July of each analyzed 
year (P1 - P7, precipitation in January-July; T1-T7, average monthly temperature in January-July). There 
were registered very strong, negative and positive correlations (NDVI with NDBI, r = -0.998; LST with P7, 
r =-0.976; LST with T4, r =-0.984; NDVI with P7, r =0.900). Also, strong negative or positive correlations 
were recorded (LST with P6, r=-0.891; LST with T5, r =-0.889; NDVI with LST, r=0.824; NDVI with T4, r 
=0.883). Depending on the time factor (T), the variation of indices was described by smoothing spline model 
(LST vs. T), or by models of the type of polynomial equations of degree 2 (NDBI vs T, R2 =0.965, p <0.05; 
NDVI vs. T, R2 =0.986, p <0.01). Multiple regression analysis led to obtaining 3D and isoquant variation 
models of NDVI and LST indices depending on T7 and P6. 
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1. INTRODUCTION  
 

Urban areas are ecosystems of high structural 
and functional complexity (Pickett et al., 2016). 
These areas include natural elements, sometimes 
strongly anthropic (parks, gardens, isolated trees, 
green spaces, etc.), access roads of different sizes 
(alleys, sidewalks, road lanes), parking, and of 
course buildings and constructions with different 
destinations as housing, recreational, agreement, 
commercial, industrial, and of course, people with 
their various activities are also considered (Anand et 
al., 2010; Heymans et al., 2019). 

The urban space is analyzed from the 
perspective of landscape planning and change, urban 
development and perspectives, and different studies 
have communicated results in these directions of 
approach (Oncia et al., 2013a,b; Rakhshandehroo et 
al., 2016; Heymans et al., 2019). 

Imaging analysis and techniques based on 
remote sensing are very useful and precise tools for 
studying and evaluating urban areas (Bianchin & 
Bravin, 2008; Du et al., 2014). 

The Geospatial approach has been used in the 
study of urban areas from different perspectives, 
such as structural and functional, quality of life 
assessment (Merschdorf et al., 2020) and aspects of 
urban pollution (eg with NO2 and SO2) (Qin et al., 
2017; Yuchechen et al., 2017). 

Studies have been carried out to optimize the 
resolution of images for urban form detection (Tran 
et al., 2011), and methods, techniques and models of 
monitoring of urban areas based on remote sensing 
have been proposed and developed (Deng et al., 
2019; Lahoti et al., 2019). 

Some studies had as topics: buildings analysis 
(Tarantino & Figorito, 2011), planning, development 
and management or urban area (Nielsen, 2015; 
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Kadhim et al., 2016). 
Different indices have been proposed and 

used for the analysis and characterization of urban 
areas, such as: Land Surface Temp - LST (Weng et 
al., 2004, 2018), Normalized Difference Vegetation 
Index - NDVI (Rouse et al., 1974), Normalized 
Difference Built-Up Index - NDBI (Zha et al., 
2003). Indices of stress and thermal discomfort 
specific to urban areas, Surface Urban Heat Island - 
SUHI, Urban Heat Island - UHI, Urban Cool Island - 
UCI, Thermal Discomfort - DI etc. were also 
proposed and used (Rasul et al., 2015; Ishola et al., 
2016; Zhou et al., 2018; Aram et al., 2019). 

Also, images were used in different satellite 
systems for the analysis and characterization of 
urban areas (Wan et al., 2015; Kumar et al., 2017; 
Guha et al., 2018). 

Thermal stress (TS), hot spots (HS), surface 
urban heat island (SUHI), urban heat island (UHI), 
thermal discomfort (DI index), are intensively 
studied issues, and of major interest for urban areas 
and quality of life (Liu & Zhang, 2011; Lehoczky et 
al., 2017; Zhou et al., 2018; Orusa & Mondino, 
2019). In this context, there were approaches 
regarding the interdependence relationship between 
land use and surfaces temperature in urban areas 
(Rinner & Hussain, 2011).  

Green space mapping (Chen et al., 2018; 
Deng et al., 2019), green space in relation to urban 
sustainable development evaluation (Van et al., 

2017), urban development plan, vegetation 
monitoring (eg urban tree and classification trees 
(Matikainen & Karila, 2011; Moskal et al., 2011), 
have also been topics of current research in this 
direction. 

The green areas in the urban environment 
have been studied in relation to various ecological, 
aesthetic, structural, functional criteria, and aspects 
of the urban ecosystem as a whole, as well as in 
relation to the conservation of the vegetation, the 
socio-demographic opinion of the population, etc. 
(Zobec et al., 2020). 

The present study started from the hypothesis 
that Landsat 8 satellite images can provide spectral 
information for the analysis and characterization of 
the urban area studied in relation to the variation of 
climatic conditions. 
 

2. MATERIALS AND METHODS  
 

The study used specific indices (LST, NDBI, 
NDVI) calculated based on spectral bands from 
Landsat 8 satellite images, in order to analyze and 
characterize the Timisoara urban ecosystem 
(associated with thermal conditions, vegetation, and 
buildings), in relation to climatic conditions over a 
period for 5 years. 

The Landsat 8 satellite system was used to 
obtain satellite images and spectral information 
(Planet Team, 2018), figure 1.  

 

 
Figure 1. Timisoara City – general map 
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Images were taken in August, depending on 
the availability of images, as follows: August 9, 
2013, August 15, 2015, August 4, 2017, and August 
7, 2018, respectively. The study was conducted over 
a five-year time period (T). 

Based on spectral bands and specific 
calculation formulas Land Surface Temp - LST 
(Weng et al., 2004), equation (1), Normalized 
Difference Built-Up Index - NDBI (Zha et al., 
2003), equation (2), and Normalized Difference 
Vegetation Index - NDVI (Rouse et al., 1974), 
equation (3) were determined. 
 

( )[ ]ε⋅+= lnp/Tw1/TLST   (1) 
 

where:  
LST – Land Surface Temperature (°K), 
T- Apparent Brightness Temperature, T10 or T11 
(°K),  
w - wavelength of emitted radiance [mm], 
 

( )mK-2101.438s/chp ⋅⋅=   (1a) 
 

h -Planck’s constant (6.626·10-34 Js) 
s - Boltzmann constant (1.38·10-23 J/K) 
c - velocity of light (2.998·108 m/s) 
ε - Land Surface Emissivity (LSE)  
 

)SWIRNIR/()SWIRNIR(NDBI +−= (2) 
 

)RNIR/()RNIR(NDVI +−=  (3) 
 

Climatic data, average monthly temperatures 
(ºC) and precipitation (mm) were taken into 
consideration in the months of January - July of each 
year in which satellite images were taken (SMT, 
2013-2018). 

The experimental data were analyzed by 
ANOVA test, correlation analysis, and regression 
analysis. Statistical safety parameters used in the 
results interpreting, were represented by the 
correlation coefficient (r), the regression coefficient 
(R2), the average error ( ε ), the parameter p, and F 
test. For the processing of satellite images and the 
calculation of LST, NDBI, NDVI indices, the 
software ArcGIS and ArcGIS Imagery (Esri, 2014) 
were used. PAST software (Hammer et al., 2001) 
and Wolfram Alpha (2020) software were used to 

analyze and process the experimental data. 
 
3. RESULTS 

 
The satellite images, Landsat 8 satellite 

system, captured in the spectral information the 
urban elements given by buildings and vegetation, 
expressed in terms of NDBI and NDVI indices. 
Associated with them was also recorded the 
variation of the LST index values, as expression of 
the proportions between buildings and vegetation. 
Data are presented in table 1, and the graphical 
distribution, in the form of maps, of the LST, NDBI 
and NDVI indices are presented in Figures 2-4. 

The ANOVA test (for Alpha = 0.001) 
confirmed the safety of the experimental data and 
the presence of the variance in the data set 
(F=9.0828, Fcrit=3.1268, p<<0.001). 

The correlation analysis revealed various 
interdependencies, both between the determined 
indices (LST, NDBI, NDVI), as well as between 
indices and temperature, respectively precipitation. A 
very strong negative correlation was identified 
between NDVI and NDBI (r = -0.998), a strong 
positive correlation was found between LST and 
NDBI (r = 0.824), and the average negative 
correlation was found between LST and NDVI (r = -
0.786). 

Regarding the LST index, very strong 
correlations were found with P7 (r = -0.976) and T4 
(r = -0.984), strong correlations with P6 (r = -0.891), 
with T1 (r = -0.821), and with T5 (r = -0.889), and 
moderate correlations with P2 (r = -0.789) and T3 (r 
= 0.762) respectively. NDVI had a very strong 
positive correlation with P7 (r = 0.900), strong 
correlation with T4 (r = 0.883), and moderate 
correlations with P6 (r = 0.752) and T5 (r = 0.794). 
Other correlations of lower intensity were also 
identified. 

The level of correlation of LST and NDVI 
indices with precipitation amount (PAMT) was 
analyzed during January - July, respectively with 
temperatures average (TAVG) for the same period 
for each year studied. 

 
Table 1. Data of LST, NDVI and NDBI indices and climatic conditions for City of Timisoara, 2013 - 2018 

Year 
Indices Precipitation (P, mm) Temperatures (T, ºC) 

LST NDBI NDVI P1 P2 P3 P4 P5 P6 P7 T1 T2 T3 T4 T5 T6 T7 

2013 33.15686 -0.05473 0.242145 54.3 37 104.2 34.1 97.3 47.5 24.9 -1.5 0.6 5.7 11.3 16.3 19.4 21.5 

2015 32.0458 -0.0335 0.214432 51.4 37.4 33.3 28.1 46.9 61.8 25 2.1 2.9 7.1 11.6 17.7 21.2 24.9 

2017 33.94456 -0.05782 0.250366 8.7 19.4 26 55.9 53.8 58.8 19.4 -4.7 3.3 9.4 10.8 17.6 22.5 24.2 

2018 27.98844 -0.11605 0.314672 58.4 44.8 67.3 28.1 51.6 80.3 72.5 3 2 4.6 16.4 20 21.3 22.6 
P -precipitation (mm); T -emperatures (ºC); 1 -January, 2 -February, 3 -March, 4 -April, 5 -May, 6 -June, 7 -July. 
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Figure 2. LST maps for Timisoara (2013 – 2018) 

 
Figure 3. NDBI maps for Timisoara (2013 – 2018) 
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Figure 4. NDVI maps for Timisoara (2013 – 2018) 

 
Weak correlation levels were found for NDVI 

with TAVG (r = 0.378), for NDVI with PAMT (r 
=0.553), for LST with PAMT (r =-0.593), and 
respectively for LST with TAVG (r = -0.655). 

These correlation levels found, showed that 
the values of the two indices (LST and NDVI) are 
much more strongly influenced by the values of 
certain months, in the period January - July, than by 
the average values (ºC) or cumulative (mm) of the 
climatic parameters. This can indicate in which 
period waterings would be recommends for the 
purpose of vegetation management, of course 
correlated with the climatic conditions, to ensure 
optimum values of the NDVI index, and indirectly a 
control of the LST index. 

The variation analysis of the indices in 
relation to the time during the study period, led to 
the obtaining of polynomial equations that described 
the behavior of the index’s values in statistical 
accuracy conditions. 

The variation of the LST index was most 
accurately described by a smoothing spline model, 
under statistical accuracy conditions ( 0.0073 =ε ), 
and the average error was calculated with equation 
(4). The data from the statistical accuracy 
parameters of the model are presented in table 2. 
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Table 2. Statistical data related to the spline model 

No xi 
LST 

yi ysi ei Ii/1 
1 0 33.157 33.112 0.0014 1.000 
2 736 32.046 32.262 0.0067 0.974 
3 1455 33.945 33.528 0.0123 1.013 
4 1823 27.988 28.234 0.0088 0.853 
    0073.0=ε   

 
The variation of the NDBI index over the 

study period was described by a polynomial model 
of degree 2, equation (5), under conditions of 
R2=0.965, p<0.01, F=126.75. 

05641.0x05E571.8x08E361.6NDBI 2 −−+−−=   (5) 
 

In the case of the NDVI index, the variation of 
values with respect to time was described by a 
polynomial equation of degree 2, equation (6), under 
conditions of R2=0.986, p=0.01, F=318.3. 
 

2434.0x0001012.0x08E592.7NDVI 2 +−−−=   (6) 
 

The interdependence relationship between 
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NDVI and NDBI was described by a linear equation, 
equation (7), under high statistical accuracy 
conditions (R2=0.995, p<0.01, F=2060.01).  
 

1771.0NDBI196.1NDVI +−=   (7) 
 

According to this relation, as the value of the 
NDBI index increases, the value of the NDVI index 
decreases directly, values highlighted in the spectral 
information. The values of both indices were present 
with a variable ratio in the spectral information of 
the satellite images, associated with the climatic 
conditions of the study period. In this sense, a very 
strong negative correlation was found between the 
two indices (r = -0.998). 

It was analyzed how the climatic conditions 
influenced the variation of the NDVI and LST 
indices during the study period. Given the level of 
correlations recorded between NDVI and LST 
indices with climatic parameters T (ºC) and P (mm), 
it was analyzed how T and P values influenced the 
distribution of NDVI and LST. 

From the analysis made it was found that the 
NDVI value for August was determined by the T 
values for July (T7) and the P values for June (P6), 
in statistical accuracy condition. 
 

 
Figure 5. 3D graph for NDVI variation according to T 

(ºC) in June, and P (mm) in June 
 
Multiple regression analysis led to equation 

(8) under conditions of R2=0.998, p<<0.01. A 3D 
graphical distribution of the NDVI values in relation 
to T7 (Y7=x) and P6 (P6=y) (Figure 5), was 
obtained, and a distribution in the form of isoquants 
which shows the optimal NDVI according to the T7 
and P6 values under the study conditions (Figure 6). 
 

fexydycxbyaxNDVI 22 +++++=     (8) 
 

where:  x – average temperature (ºC) in July (T7);  

y – precipitation (mm) in June (P6); 
a, b, c, d, e, f - the equation (8) coefficients*; 
a= -0.00164; 
b= -0.00415; 
c= 0.13119; 
d= -0.20018; 
e= 0.00384; 
f=0. 

 

 
Figure 6. Graphical representation in the form of isoquant 
for optimal NDVI according to the optimum values of T 

(ºC) in July and P (mm) in June 
 

 
Figure 7. 3D graph for LST variation according to T (ºC) 

in June, and P (mm) in June 
 

A similar approach was made for the LST 
index and equation (9) was found that described the 
variation of the LST index in terms of T7 (average 
temperature in July, ºC) and P6 (precipitation in 
June, mm), under conditions of R2=0.998, p<<0.01. 
A 3D graphical distribution of LST values in 
relation to T7 (T7=x) and P6 (P6=y) was obtained 
(Figure 7).  
 

fexydycxbyaxLST 22 +++++=        (9) 
 

where:  x – average temperature (ºC) in July (T7);  
y – precipitation (mm) in June (P6); 
a, b, c, d, e, f - the equation (9) 

coefficients**; 
a= -0.22844; 
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b= -0.08851; 
c= -9.09043; 
d= 6.79466; 
e= 0.20676; 
f=0. 

*, ** - for high accuracy, the values of the coefficients 
of equations (8) and (9) were 16 decimal digits 
 

 
Figure 7. 3D graph for LST variation according to T (ºC) 

in June, and P (mm) in June 
 

 
Figure 8. Graphical representation in the form of isoquant 

for optimal LST according to the optimum values of T 
(ºC) in July and P (mm) in June 

 

Also, a distribution was obtained in the form 
of isoquants, which shows the optimum LST 
according to the thermal values and precipitation in 
the study conditions (Fig. 8). 

 
4. DISCUSSIONS 
 
The results generated are in accordance with 

the findings of other studies and research in the use 
of satellite images and spectral information for the 
evaluation and characterization of terrestrial areas 
and in particular urban ones. Spectral information 
from high resolution images accurately expresses the 
state and dynamics in time and space of the analyzed 
surface (Gómez et al., 2016; Khan et al., 2018). 

Specific indices calculated based on spectral 
data facilitated the evaluation of some areas with 
various geometries and typologies and provided 
practical solutions for optimization and management 
(Govedarica et al., 2015; Štrbac et al., 2017; 
Milanović et al., 2019; Firoozi et al., 2020; Popescu 
et al., 2020; Sala et al., 2016, 2020). 

The NDVI, NDBI and LST indices used in the 
present study were frequently used and with high 
efficiency in other studies for the analysis and 
assessment of urban ecosystems (Bonafoni & 
Keeratikasikorn, 2018; Guha et al., 2018; Kaplan et 
al., 2018; Firozjaei et al., 2019; Liu et al., 2019; 
Wong et al., 2019), and this confirms that the 
investigation methodology used was well chosen. 

Urban areas are highly anthropogenic 
ecosystems, and imaging technologies have proven 
useful in the study and management of these 
ecosystems (Kolcsár & Szilassi, 2018; Świercz & 
Zajęcka, 2018; Tavares et al., 2019). From the 
analysis of Landsat images, Zhang et al., (2018) 
highlighted temporal variation patterns in four cities 
with strongly anthropized urban ecosystems, in 
conditions of statistical safety (R2> 0.80, RMSE 
<7.2%). 

The effect of the heat islands in the urban 
areas is in strong correlation with the environment 
built by man and creates discomfort, respectively it 
affects the human health.  

A study conducted in the Toronto City, based 
on satellite images, reported statistically significant 
differences between the average thermal values in 
the area of commercial or industrial land (29.1ºC) 
compared to the average thermal values in areas 
with parks or leisure areas (25.1ºC), or areas with 
water gloss (23.1ºC) (Rinner & Hussain, 2011).  

Another study conducted on Skopje City, 
reported values of the correlation between LST and 
NDVI of r=-0.63 (2013) and r=-0.59 (year 2017), 
and between LST and NDBI correlation values of 
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r=0.67 (2013) and r=0.64 (year 2017) (Kaplan et al., 
2018). 

Study on Košice locality based on LST 
(Landsat 8 scenes), in a comparative analysis 
between urban and rural environment, led to 
significant differences in condition of p <0.001, and 
high LST values were associated with industrial 
urban structures, lack of vegetation and of water 
surface (Onačillová & Gallay, 2018). 

Regarding the variation of LST in relation to 
NDVI, Onačillová & Gallay (2018) reported for 
August the correlation value R2 = 0.693, and in the 
present study for August was recorded the 
correlation value of LST with NDVI at r = - 0.786, 
with a similar statistical significance. 

Similar expressions of LST have also been 
confirmed by other studies in urban areas, such as in 
the city of Brno (Dobrovolný, 2013), the city of 
Beijing (Chen et al., 2015), the cities of Florence 
and Naples (Guha et al., 2018), Raipur city (Guha & 
Govil, 2020) etc. 

The values of the LST index registered very 
strong and strong correlations with the precipitations 
of June - July, but also with the temperatures of 
March, April, and May. The thermal values from 
March, April and May are important for the 
beginning of a new vegetation cycle. In this period 
of the vegetative cycle, the thermal values have a 
priority role, in the conditions of the water reserve in 
the soil during the vegetative rest period. Favorable 
thermal conditions lead to a good start of the 
vegetation, which will be reflected in the degree of 
the later vegetal carpet development, so also in the 
NDVI index values that acurately expresses the 
vegetation. 

Subsequently, with the growth of vegetation 
and the intensification of the evapotranspiration 
process, associated with longer and warmer days, the 
need for water becomes higher for the vegetation in 
the urban ecosystem. In the conditions of July and 
August, with the high thermal values specific to this 
period, but also with the cumulative thermal effect 
of the radiant surfaces in the city (buildings, roads, 
parking lots, etc.), the LST index values faithfully 
reflect the conditions of the urban ecosystem. 

The LST / NDVI balance acquires new 
valences, and in the conditions of a reduced volume 
of precipitations in the respective period, the 
waterings are necessary to ensure optimal conditions 
for the vegetation. A good rainfall regime replaces 
this water requirement of the plants, but in its 
absence, maintenance watering is required for all 
green spaces, even small areas, and these have an 
important role in urban thermal regulation, a fact 
confirmed by some studies (Onačillová & Gallay, 

2018). 
This suggests that water supply of urban green 

spaces, correlated with precipitation levels, can 
significantly contribute to ensuring optimal 
vegetation conditions captured by the NDVI index 
and to control and manage the appearance of thermal 
stress, captured at the LST index (Atasoy, 2018; 
Govil et al., 2019; Wu & Zhang, 2019). 
 

5. CONCLUSIONS 
 
The study of urban areas through satellite 

images, specific indices and imaging analysis is of 
interest and also a necessity for assessing the 
specific environmental conditions of urban 
ecosystems. 

The specific indices LST, NDVI and NDBI 
were useful tools in the present study to evaluate the 
temporal variation over a period of five years of the 
environmental conditions in the city of Timisoara, in 
close relation with the climatic conditions of 
temperature and precipitation. 

The NDVI index captured the vegetation 
dynamics in relation to the temperature and 
precipitation conditions in January - July time 
interval, for a period of five years (2013 - 2018). 

Very strong correlations of NDVI with July 
precipitation (r = 0.900), very strong negative 
correlations of LST with July precipitation (r = -
0.976), very strong negative correlations between 
NDVI and NDBI (r = -0.998) as well as strong 
positives correlations between LST and NDBI (r = 
0.824) recommend these indices for the decisions to 
provide green areas watering, correlated with the 
volume of precipitation between June and July, and 
as a model for managing environmental conditions 
in the city of Timisoara. 

It is important even to water the small green 
surfaces, the urban vegetation contributing to the 
balance of the NDBI / NDVI / LST relationship and 
the management of the urban environmental 
conditions. Watering of radiant heat surfaces (roads, 
concrete parking lots) can help reduce thermal 
radiation. Ecological parkings can also contribute to 
the control of thermal radiation and the reduction of 
LST values. 

The study may be the basis for the 
development of a model for monitoring and 
management of the urban ecosystem in the city of 
Timisoara in order to monitor environmental 
conditions, especially in the summer season, and 
water supply interventions for green spaces, 
reflected in values of NDVI and LST indices, 
correlated with climatic conditions. 
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