

SPECIATION OF SOME SELECTED ELEMENTS IN FLY ASH OF PARICCHA THERMAL POWER PLANT JHANSI FOR POTENTIAL, ECOLOGICAL, RADIOLOGICAL AND HEALTH EFFECTS.

**Srivastava ANJURI^{1,2}, Yadav SURABHI^{1*}, Srivastava SANJAY²,
Saha ABHIJIT³ & Deb SADHAN BIJOY³**

¹*Department of Chemistry, Bipin Bihari College, Jhansi 284002. e-mail: anjuriomaya@gmail.com, *
drsurabhi2020@gmail.com, +9198768604, +9451937171*

²*Department of Applied Science, Institute of Engineering and Technology, Lucknow 226021.
e-mail: srivastavsanjay.iet@gmail.com, +9151514150*

³*Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085.
e-mail: asaha@barc.gov.in, sbdeb@barc.gov.in, +91738691189*

Abstract: Imprudent disposal of industrial by-products leads to many geo-environmental impacts. Fly ash, a by-product from thermal power plants has an adverse effect on the environment but it has also been reported as a source of diverse rare-earth elements. The quantification of various rare-earth elements in the fly ash sample collected from the Parichha thermal power plant (PTPP) at Jhansi, Uttar Pradesh, India, is being reported using inductively coupled plasma mass spectrometry (ICPMS). Results show that fly ash from PTPP contains micro nutrients such as Mn, Cu, Zn, Ni and Co in normal sub-range and diminutive range of rare earth elements. The toxic elements such as Hg, Pd, Pt, Rh and Zr, and radioactive elements such as ²³⁸U and ²³²Th were below detection limit. These results indicate that the PTPP's fly ash imparts no ecological or health damage. The presence of elemental concentration in optimal quantities may be useful in the agricultural field for better crop production. The only threat was the incidence of soluble Ba, although its concentration was found very low.

Key word: Fly ash; ICP-MS; Rare-earth elements; radioactive elements; Agricultural Field.

1. INTRODUCTION

The need of energy in the overall development of any country is of paramount importance. India being a developing country is no exception. India is primarily dependent on thermal power plants for its electricity requirements. Coal of different varieties and obtained from various mines is being used in these thermal power plants. Elements present in varying concentrations in fly ash, a coal by-product from thermal power plants, lead to geochemical, physical, biological and radiological effects. The presence of elements such as B, Ba, Mg, Na, Fe, Zn, U, Rn and Th in fly ash has been reported (Sharma & Kalra 2000). The toxic and radioactive elements present in fly ash may cause harmful effects on soil, surrounding water and human beings. A small amount of Ba in water can cause breathing difficulties, change in heart rhythm

and nerve reflexes, increased blood pressure, muscle weakness, and stomach irritation and low Mg levels in the body may result in diseases like osteoporosis, high blood pressure, clogged arteries, heredity, heart disease, dialysis and stroke (Baaji et al., 2015). A high concentration of radioactive minerals in soil because of fly ash disposal has been reported in Slovenia, Bangladesh, Brazil and China. Radiation from the coal-fired thermal plant may show a pernicious effect in the area within 0.8-1.6 km radius of the thermal power plant (Habib et al., 2019). Gabbard has reported that Americans who live near the coal-fired thermal power plants are exposed to higher radiation than those who live near the nuclear power plant (Gabbard, 1993). In India limited research on radiation from fly ash has been reported. Singh et al., (2015) and Kant et al., (2010) have reported radiation of Radon (Rn) from coal and fly ash collected from different thermal power plant in

northern India. However, the distribution and enrichment of other naturally occurring radioactive metals like U and Th in fly ash have not been characterized in India.

In contrast, many researchers have reported fly ash as a possible source of various useful micro and macro elements (Chem et al., 2001). Sharma & Kalra have suggested the usefulness of trace elements from fly ash to improve crop growth and its addition generally decreased the bulk density of soil (Sharma & Kalra 2000). A study on the coal fly ash of mine reveals it to be a propitious resource of Rare Earth Elements (REE), a composite group of 17 metallic elements of lanthanide series from $^{139}\text{La}_{57}$ to $^{175}\text{Lu}_{71}$ and $^{45}\text{Sc}_{21}$ and $^{89}\text{Y}_{39}$ (Rim, 2016, Rim et al., 2013) and have been reported to have major effects on soil and environment (Wang & Liang, 2015). Hu et al. have reported the use of REEs in pedogenic processes, geochemical study and agronomic fertilizers (Hu et al. 2002). REEs also act synergistically with the plant's hormones to stimulate seed germination (Shtangeeva & Ayrault, 2007). The average global value of REE is 445 mg/kg in fly ash, in which Ce is only soluble REE, which causes soil pollution (Franus & Malgorzata, 2015). There is a need to quantify the various constituents present in fly ash as their occurrence may cause health issues for living beings or can serve as a potential source of many elements.

2. MATERIAL AND METHODS

2.1 Study area

Parichha Thermal Power Plant (PTPP) is a coal-based thermal power plant located near NH 25 on the northern bank of Betwa River in Jhansi, U.P., India. Jhansi district is situated at 24° 11' N to 25° 57' N latitude and 78° 10' E to 79° 23' E longitude in the country's semi-arid region at the height of about 250 meters above mean sea level.

2.2 Sampling, sample preparation and methodology

The PTPP is used bituminous coal [taken from Bharat coalfield company ltd (BCCL) and Northern coalfield (NCL)], burning at 1100-1300°C for electricity generation. It is having SiO_2 , Al_2O_3 , and Fe_2O_3 . The reported loss of ignition value of this coal is 0-15%. Fly ash sample has been collected in July 2018 from ESP and ash slurry at 27 °C environmental temperature. The S-W sample was directly collected from ash-slurry and filtered twice to get the clear solution. S-A and S-B samples were

digested by taking 1g fly ash (collected from ESP) in 25 ml of N/10 HCl acid and N/10 NaOH base solvent separately at $\pm 60^\circ\text{C}$ for 30 minutes. The samples were analysed by using Inductively Coupled Plasma Orthogonal Acceleration Time-of-Flight Mass Spectrometer (ICP-oa-TOFMS), Model no Optimass 8000R from GBC Australia. The operating instrumental conditions can be found in Saha et al., 2016. In ICP-MS analysis, the nuclides of every element have been chosen based on maximum abundance and minimum polyatomic interference. Multi-element standard solutions containing 5-500 ng mL^{-1} of individual analytes were analyzed to construct the calibration curve for each element. The detection limit values were determined using the formula $3\sigma/s$ (where “ σ ” is the standard deviation of the blank sample and “ s ” is the slope of the calibration curve). Pure water, N/10 solution of HCl and N/10 solution of NaOH were analyzed to get the respective detection limit values.

2.3 Sampling and methodology for radiation measurement

A thermo-scientific radiation meter, model-RADEYEB20 α , β , γ survey meter, was used for radiation measurement. The following solid samples were analyzed by radiation meter. For radiation measurement samples placed directly in contact with the instrument.

1. F_{Esp} (Fresh fly ash collected from Electrostatic precipitator (ESP)).
2. F_{Bottom} (Bottom fly ash collected from ash-slurry).
3. F_{Dumping} (Fly ash collected from dumping site).
4. F_{Brick} (Fly ash made brick).

range of water through leaching during acid rain on the surrounding of PTPP. A lower Mg concentration

3. RESULTS

Results of the samples obtained from ICPMS analysis are presented in Table 1.

4. DISCUSSION

Total 37 elements are estimated in fly ash of Parichha thermal power-plants (Table 1). Among them, 23 elements belong to s, p and d block, 14 elements belong to f block in which 12 elements are rare-earth elements, and 2 are naturally abundant radioactive elements. It is analysed that Li's concentration is low than its average concentration of 15.6 mg/kg in coal, as reported by U.S. National Committee for Geochemistry (USNCG, 1980).

Table 1. Indicating the concentration of various elements.

Elements	Isotopes monitored in ICP-MS	Water digested (S-W)(mg/L)	Acid digested sample (S-A)(mg/kg)	Base digested sample (S-B)(mg/kg)
Li	³ Li	0.060	0.875	0.625
Mg	²⁴ Mg	9.100	275.000	325.000
V	⁵¹ V	0.435	1.250	0.750
Ti	⁴⁸ Ti	0.048	12.750	8.750
Mn	⁵⁵ Mn	ND	62.500	57.500
Co	⁵⁹ Co	ND	1.525	1.250
Ni	⁶⁰ Ni	0.012	0.125	0.125
Cu	⁶⁵ Cu	ND	1.350	1.100
Zn	⁶⁶ Zn	ND	7.650	5.700
Ga	⁶⁹ Ga	0.035	ND	ND
Ge	⁷⁴ Ge	ND	ND	ND
Sr	⁸⁸ Sr	0.300	5.625	4.375
Y	⁸⁹ Y	ND	2.125	1.875
Zr	⁹⁰ Zr	ND	ND	ND
Ru	¹⁰² Ru	ND	ND	ND
Rh	¹⁰³ Rh	ND	ND	ND
Pd	¹⁰⁶ Pd	ND	ND	ND
Cs	¹³³ Cs	ND	ND	ND
Ba	¹³⁸ Ba	0.480	3.250	1.850
La	¹³⁹ La	ND	1.000	0.700
Ce	¹⁴⁰ Ce	0.005	2.375	1.900
Pr	¹⁴¹ Pr	ND	0.300	0.250
Nd	¹⁴² Nd	ND	1.800	1.500
Sm	¹⁵² Sm	ND	0.375	0.300
Eu	¹⁵³ Eu	ND	0.100	0.075
Gd	¹⁵⁸ Gd	ND	0.400	0.350
Dy	¹⁶⁴ Dy	ND	0.300	0.250
Tm	¹⁶⁹ Tm	ND	ND	ND
Yb	¹⁷⁴ Yb	ND	ND	ND
Hf	¹⁸⁰ Hf	ND	ND	ND
Lu	¹⁷⁵ Lu	ND	ND	ND
Pt	¹⁹⁵ Pt	ND	ND	ND
Au	¹⁹⁷ Au	ND	ND	ND
Hg	²⁰² Hg	ND	ND	ND
Th	²³² Th	ND	ND	ND
Pb	²⁰⁸ Pb	ND	0.250	0.100
U	²³⁸ U	ND	ND	ND

*ND-not detected. *The detection limit of these elements can be seen in supplementary table. 1.

Supplementary table 1.

Elements	Isotopes monitored in ICP-MS	Water digested (S-W) (ng/L)	Acid digested sample (S-A) (ng/L)	Base digested sample (S-B) (ng/L)
Li	³ Li	1200	1350	1500
Mg	²⁴ Mg	20	22	30
V	⁵¹ V	25	28	36
Ti	⁴⁸ Ti	28	30	40
Mn	⁵⁵ Mn	22	25	28
Co	⁵⁹ Co	35	40	52
Ni	⁶⁰ Ni	200	280	400
Cu	⁶⁵ Cu	45	52	65
Zn	⁶⁶ Zn	20	21	28
Ga	⁶⁹ Ga	22	25	32
Ge	⁷⁴ Ge	55	70	92
Sr	⁸⁸ Sr	12	15	22

Y	⁸⁹ Y	15	17	20
Zr	⁹⁰ Zr	22	26	33
Ru	¹⁰² Ru	22	24	30
Rh	¹⁰³ Rh	12	15	21
Pd	¹⁰⁶ Pd	20	25	35
Cs	¹³³ Cs	11	12	15
Ba	¹³⁸ Ba	15	16	28
La	¹³⁹ La	10	12	18
Ce	¹⁴⁰ Ce	15	20	26
Pr	¹⁴¹ Pr	8	10	15
Nd	¹⁴² Nd	24	30	40
Sm	¹⁵² Sm	22	25	32
Eu	¹⁵³ Eu	15	18	25
Gd	¹⁵⁸ Gd	25	30	40
Dy	¹⁶⁴ Dy	21	25	36
Tm	¹⁶⁹ Tm	8	12	18
Yb	¹⁷⁴ Yb	15	18	24
Hf	¹⁸⁰ Hf	18	22	30
Lu	¹⁷⁵ Lu	6	10	16
Pt	¹⁹⁵ Pt	12	15	18
Au	¹⁹⁷ Au	8	10	12
Hg	²⁰² Hg	50	90	150
Th	²³² Th	5	5	6
Pb	²⁰⁸ Pb	8	10	10
U	²³⁸ U	6	8	6

The detection limit values were determined using the formula $3\sigma/s$ (where “ σ ” is the standard deviation of the blank sample and “ s ” is the slope of the calibration curve). Pure water, N/10 solution of HCl and N/10 solution of NaOH were analyzed to get the respective detection limit values.

Table 2. Radiation ranges of fly ash samples.

Sample	Background radiation value	Sample radiation value
F_{Esp}	747 cps	805 cps
F_{Bottom}	747 cps	791 cps
F_{Dumping}	747 cps	796 cps
F_{Bricks}	747 cps	801 cps

Magnesium (Mg) is found in much higher concentrations in acid and base digested samples than S-W, which indicates that insoluble Mg in fly ash may be responsible for increasing the hardness in soil (below 4 mg/kg) is supposed to be responsible for falling of leaves (GOI, 2015). Similarly, Sr is present in higher concentrations in S-A and S-B compared to S-W. Its intake helps teeth and bone health but may disrupt bone if taken in thousands of ppm (Specht et al., 2014). Sr level in the fly ash of PTTP is not higher to cause harmful effects. Ba is found in all the digested samples, but the water-soluble Ba concentration is only 0.48 mg/L, which is less than the USEPA range of 2.0 mg/L (WQ). Water-soluble Ba causes adverse health effects and even fatality due to the absorption of its compounds like hydroxide, nitrate and chloride. But fortunately, it forms an insoluble salt with other standard components present in the environment, such as carbonates and sulphate and hence poses little risk. Cs and Ge are found below detectable limit in all samples. Pb has been found in

low concentrations in S-A and S-B. Oxides of lead such as PbO, PbO₂ and Pb₃O₄ are toxic and can accumulate in the human body by long term exposure (Wani et al., 2015). In the present study, the soluble Pb is not detected in fly ash samples which suggest it doesn't pose any severe effect on soil health and the environment. Water-soluble Ga is present only in S-W. Ti is showing higher solubility in acidic medium (S-A) than aqueous medium S-W. It is not poisonous, and the human body can tolerate Ti in a large dose (Barksdale, 1968). Humans can ingest 0.8 mg of titanium daily, but most of its passes through without being absorbed by tissue (Emsley, 2011). V is found to be in higher concentration in acidic medium (S-A) than in basic (S-B) and water medium (S-W). More than 1.8 mg per day of V is harmful to humans, animals, and plants (Rodriguez et al., 2016). The average concentration of V in soil has been reported to be 90 mg/kg. It plays an essential role in plant growth and takes part in nitrogen fixation and accumulation (Teng et al., 2011). Mn is found in S-A

and S-B. Its recommended daily intake concentration is 5.0 mg, and its higher dose may hinder the absorption of iron (Joode et al., 2016). Co is showing solubility S-A and S-B. Co is a vital component of various enzymes and co-enzymes involved in plants and animals' growth and metabolism (Elbagir et al., 2018). Significantly less concentration of Ni has been found in all the samples. Its oral intake of 1 mg/day is safe for human beings, whereas a higher dose may cause toxicity and carcinogenicity (Ahamad & Ashraf, 2011). The concentrations of Cu and Zn are found in S-A and S-B. According to GOI 2015, a minimum of 0.2 mg/kg of Cu and 0.6 mg/kg of Zn is essential for plant nutrition in the soil. Y has been found in S-A and S-B. Although officially there is no information on Y's acceptable intake value, its exposure has been reported to result in lung disease (Xi et al., 2015). The platinum group of elements viz., Pd, Ru, Rh and Pt, Zr, Hf, Au and Hg are below detection limit in the fly ash samples. Naturally, light REEs are found in an elevated amount in this type of sample, and concentrations vary from 0.30 to 2.375 mg/kg. Commonly in the light REEs, Ce's concentration remains high and the same is found in our case (Table 1). Ce is the only soluble REE, and the S-W sample also confirms it. Here the value of Ce is trivial than the naturally occurring value of 60 mg/kg in soil (Sneller et al., 2000). La is present in an appreciable amount in S-A and S-B. La is being used in agriculture to enhance yield for improving the quality of crops (He & Lo, 2000). The proportion of the two elements viz., La and Ce show a similar trend as their natural abundance, i.e., Ce concentration is twice of La concentration. Nd concentrations have been found in S-A and S-B. Zhan et al., 2013, have suggested that low concentrations of Nd³⁺ (1, 3 and 5 mg per liter) significantly promote seed germination. Eu is present in low concentrations in S-A and S-B. According to the previous literature, Eu concentrations above 10 mg/l can promote callus growth, while lower concentrations can adversely affect callus subculture (Shtangeeva & Ayrault, 2007). The present investigation suggests that the total REE concentration in fly ash is much less than the average global value. The results are not consistent with Franus (Franus & Malgorzata, 2015). In this analysis, U and Th are absent in all three samples. The absences of these naturally occurring radionuclides are further verified by a radiation meter. The results have been shown background radiation 747 cps, and all four samples represented a radiation range between 791-805 cps. The results exhibit an insignificant difference between background value and radiation value from fly ash. This study concludes that the fly ash of PTSP may not exert any harmful

radiological effect on the environment.

In conclusion, the huge amount of generated fly ash can disturb and alter the chemistry of surrounding soil, water, and air. This study reflects that among 37 analysed elements, 8 water-soluble elements may spread from fly ash to soil, groundwater and surface water. In contrast, acid rain would increase the solubility of 13 other elements in the surrounding industrial area. However, any element's bio availability and toxicity depend on its characteristics like oxidation state, metal phase, soil nature, and pH. The non-existence of naturally occurring radionuclides viz., U and Th show no radiological effect of PTSP's fly ash. The absence of the platinum group of elements and other toxic elements viz., Hg, Hf and Zr suggest no exposure of these elements upon using the fly ash. The optimum concentrations of well-established micro nutrients viz., Mn, Cu, Zn, Ti, Ni and Co suggest that PTSP's fly ash can be incorporated in soil without any adverse effect. The level of REE in PTSP's fly ash is in the sub-normal range and no adverse effect on the environment is expected.

Acknowledgments

Author Anjuri Srivastava (AS) is thankful to INSPIRE fellowship, Department of Science and Technology, New Delhi for financial support (JRF). We are thankful to Dr. P. C. Singhal for helpful suggestion in manuscript.

REFERENCES

- Ahamad, M. S. & Ashraf, M.** 2011. *Essential roles and hazardous effect of nickel in plants*. Reviews of Environmental Contamination and Toxicology, 14, 125-167.
- Baaji, J. H. F., Hoenderop, J. G. G. & Bindels, R. J. M.** 2015. *Magnesium in man: implications for health and disease*. Physiological Reviews, 95 (1), 1-46.
- Barksdale, J.**, 1968. *Titanium*. In Cifford, A hampel (ed.). *The Encyclopedia of the chemical elements*. New York. Reinhold Book Corporation, 732-738.
- Chem, H. Z., Chen, Z. C., Liu, S. Z. Q., Wu, H. & Wu, F. H.** 2001. *Study on interaction of selenium and arsenic in plant*. Agro. Environment Proto, 20, 91-93.
- Elbagir, N., Van, H. & Dominique, M. E.** 2018. *Cobalt. Dirty energy*. CNN Retrieved, <http://en.m.wikipedia.org/wiki/cobalt>.
- Emsley, J.** 2001. *Titanium Nature building blocks, an A-Z guide to the elements*. Oxford. England. UK. Oxford University. Press ISBN 978-0-19-850340-8.
- Franus, W. & Malgorzata, W. M.** 2015. *Motyka Coal fly ash as a resource for rare earth element*. Environmental Science and Pollution Research, DOI 10.1007/s11356-015-4111-9.
- Gabbard, A.** 1993. *Coal Combustion: Nuclear Resource*

- or Danger? Emissions from burning coal include uranium and other nuclear materials—potential hazardous and resource. <http://www.ornl.gov/ORNLReview/rev26-34/text/coalmain/html>. 26,
- GOI- Government of India.** 2015. *Dose of micronutrient for soil*. <http://farmer.gov.in>.
- Habib, A., Basuki, T., Miyashita, S., Bakelesi, W., Nakashima, S., Techato, K., Khan, R., Majilis, A. B. K. & Phoungthong, K.** 2019. *Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: implications for radiological health hazard*. Environmental Monitoring and Assessment. <http://link.springer.com/article/10.1007/s10661-018-7160-y>.
- He, Y. W. & Lo, C. S.** 2000. *Cerium and lanthanum promote floral initiation and reproductive growth of Arabidopsis thaliana*. Plant Science, 159, 117-124.
- Hu, Z., Richter, H., Sparovek, G. & Schnug, E.** 2002. *Physiological and biochemical effects of Rare earth elements on plant and their agriculture significance: a review*. Journal of Plant Nutrition, 27, 180-220.
- Joode, B. V. D., Barbeau, B., Bouchard, M. F., Mora, M. & Mergler D.** 2016. *Manganese concentration in drinking water from village near banana plantation with aerial mancozeb spraying in Costa Rica: Results from the infant's environmental health study*. Environmental protection, 215, 247-257.
- Kant, K., Rashmi., Kuriakose, S., Sonkawade, R. G., Chauhan, R. P., Chakravarti, S. K. & Sharma, G. S.** 2010. *Radon activity and exhalation rates in Indian fly ash samples*. Indian journal of pure and applied physics, 48, 457-462.
- Rim, K. T.** 2016. *Effect of rare earth elements on the environment and human health: A literature Review*. Toxicol. Environmental Health Science ToxEHS, 8 (3), 189-200.
- Rim, K. T., Koo, K. H. & Park. J. S.** 2013. *Toxicological evaluation of rare earth and their health impacts to worker: A literature*. Safe and Health at Work. 4, 12-26. <http://dx.doi.org/10.5491/SHAW.2013.1.1.12>.
- Rodriguez, R., Arredondo, I. M. & Rodriguez, I.** 2016. *Geological differentiation of ground water threshold concentration of Arsenic, Vanadium and Fluorine in El Bajío-Guanajuatense*. Mexico. Geofisica International, 55 (1), 5-15.
- Saha, A., Deb, S. B. & Saxena M. K.** 2016. *Determination of trace impurities in advanced metallic nuclear fuels by inductively coupled plasma time-of-flight mass spectrometry (ICP-ToF-MS)*. Journal of Analytical Atom Spectrom, 31, 1480-1489.
- Sharma S.K., & Kalra, N.** 2006. *Effects of flyash incorporation on soil properties and productivity of crops: A Review*. Journal of scientific and industrial research, 65, 383-390.
- Shtangeeva, I. & Ayrault, S.** 2007. Effects of Eu and Ca on yield and mineral nutrition of wheat (*Triticum aestivum*) seedlings. Environmental Science Pollution Botany, 59, 49-58.
- Singh L. M., Kumar, M. Sahoo, B. K., Sapra, B. K. & Kumar, R.** 2015. *Study of natural radioactivity, radon exhalation rate and radiation doses in coal and fly ash samples from Thermal power plants, India*. Physics Procedia, 80, 120-124.
- Sneller, F. E. C., Kalf, D. F., Weltje, L. & Van, W. A. P.** 2000. *Maximum permissible concentration and negligible concentration for rare earth elements (REEs)*. Research for Man and Environment. RIVM report, 601501 01.
- Specht, A. J., Mostafaei, F., Lin, Y. Xu, J. & Nie, L. H.** 2017. *Measurements of Strontium levels in human bone in vivo using portable X-ray fluorescence (XRF)*. Applied Spectroscopy. 71 (8), 1962-1968.
- Teng, Y., Yang, J., Sun, Z., Zuo, R. & Zheng, J.** 2011. *Environmental vanadium distribution, mobility and bioaccumulation in different land use district in Panzhihua region, SW, China*. Environmental Monitoring and Assessment., 176, 605-620.
- US national committee for geochemistry** 1980. *Trace elements geochemistry of coal resources development related to environmental quality and health*, National academy of sciences. Washington.
- Wang, L. & Liang, T.**, 2015. *Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China*. Scientific Reports, DOI: 10.1038/srep12483.
- Wani, A.L., ARA, A. & Usmani, A.** 2015. *Lead toxicity: a review*. Interdisciplinary toxicology. 8 (2), 55-64.
- Water quality association. International headquarters and laboratory, www.wqa.org.
- Xi, L. C., Chuan, M. A., Qin, F. H. Yuan, Bin, Z. X. H. & Dong, J. X.** 2015. *Neurobehavioral assessment of rats exposed to Yttrium Nitrates during development*. Biomedical Environment Science, 24 (4), 281-290.
- Zhan, C., Li, Q., Zhang, M., Zhang, N. & Li, M.** 2013. *Effects of rare earth elements in growth and metabolism of medicinal plants*. Acta Pharmacology Maceutica Sinica B, 3 (1), 20-24.

Received at: 03. 08. 2020

Revised at: 25. 03. 2021

Accepted for publication at: 13. 04. 2021

Published online at: 17. 05. 2021