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Abstract: Air pollution is a major environmental problem in Indonesia. Potentially toxic elements (PTEs) 
which bounded to particulate matter (PM) samples were collected from Maros karst area, the second largest 
karst in the world. The seasonal levels of PTEs and ecological risk assessment were used to investigate the 
pollution levels near the residential areas using pollution load index (PLI) and potential ecological risk 
index (PERI). Spatial distributions of ecological risks based on the PTEs concentration have been explored 
with Empirical Bayesian Kriging method. The result indicated the mean concentration of PTEs (Cr, Pb, Cu, 
As and Zn) were significantly higher in dry season than wet season. Based on the PERI and PLI values, the 
PTEs accumulation are more severe near industrial activities and traffic roads. Hotspots of the PTEs were 
located in the East and Southeast area. The implications of this study could be used to optimize the 
management strategies in controlling the PTEs pollution and become a scientific reference for taking 
environmental protection policies. 
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1. INTRODUCTION 
 

Air pollution is caused by the accumulation of 
pollutants released into the atmosphere (Manisalidis et 
al., 2020). These pollutants are generated from natural 
events such as volcanoes, wildfires and dust storms or 
human activities including coal combustion, vehicle 
emissions and waste burning (Yin et al., 2021; Jelea, et 
al., 2007a; Rauf et al., 2020). The problem of particulate 
matter (PM) in ambient air has received a lot of attention 
as the social economy, industrialization, and 
urbanization have grown. The PM can reduce visibility 
and have a severe negative impact on climate change in 
global and regional areas (Lertxundi et al., 2010). The 
trace elements represent a small fraction of the total PM 
mass. Among the trace elements, arsenic (As), lead (Pb), 
cadmium (Cd), chromium (Cr) and mercury (Hg) are 
classified as potentially toxic elements (PTEs) or 
poisonous even at low concentrations. Moreover, nickel 

(Ni), iron (Fe), and zinc (Zn) are micronutrients, but at 
certain concentrations and exceeding the specified 
limits, they can cause adverse impact on human health 
and organisms (Pourret & Hursthouse, 2019; Vitó et al., 
2020). Thus, these elements are also included as PTEs. 
Several studies have proved that PTEs are associated 
with adverse health effects (Ziyaee et al., 2019). 

Increasing anthropogenic activities in Indonesia, 
which elevated the number of vehicles, fossil fuel 
combustion, construction, and stone crushing, has been 
reported to produce PM that possibly contains PTEs 
(Kurniawan et al., 2021; Santoso et al., 2020). These 
activities potentially degrade the environment, resulting 
the decreased environmental quality and human health 
problems (Jelea, et al., 2007b). Some reports confirmed 
the high levels of PTEs that accumulated in ambient air 
around anthropogenic activities such as road dust and 
industrial processes (Celo et al., 2021; Mallongi et al., 
2021). Tehran, the most industrialized city in Iran, had 
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high enrichment levels of Cd, Cu, Pb, and Zn, with 
mean concentrations 6.6, 6.4, 7.5, and 8.4 times higher 
than background values due to road dust and industrial 
activity (primarily the cement industry) (Ali-Taleshi et 
al., 2021). Another study with the same results 
confirmed the impact of meteorological conditions on 
Pb contamination in atmospheric particles from 
industrial sources (Zhou et al., 2020). The accumulation 
of PTEs in the environment will bioaccumulate in the 
food chain that affecting animals and humans 
(Thalassinos & Antoniadis., 2021). This is in 
accordance with the findings reported in the target 
hazard quotient (THQ) of Pb and Cr in zucchini and 
spinach stems that exceeded the safe limit in Bangladesh 
(Al Amin et al., 2020). 

Elements of the earth's crust, such as Zn, Mn and 
Ni, usually come from natural enrichment such as rock 
weathering and soil resuspension. A study in Qatar 
found the accumulation of Cd, Cu, Pb, and V is 
attributed to parent rock material and the natural 
weathering process (Alsafran et al., 2021). Geogenic 
inputs should not be neglected since local geology 
plays a substantial role (Marszałek et al., 2014). In this 
present study, the area is mostly surrounded by karst 
rocks consisting of basalt, limestone, alluvial soil and 
intrusive rocks (Astuti et al., 2021a; Rauf et al., 2021a). 
Moreover, this area is included as a national park and 
tourism destination, where the famous art painting 
caves from prehistoric times lie in this region (Huntley 
et al., 2021). In the last two decades, the activity of 
karst quarries in this area has been increasing. The 
largest private cement factory in Eastern Indonesia, 
marble factories and karst mining were established. 
This condition can be a serious threat to the 
environment and human.  

Dry and wet deposits can dissolve rock and 
cause a wind-assisted distribution of pollutants into 
the air. Hence, the soil resuspension and the blowing 
winds are able to distribute PTEs in the air. The 
accumulation of PTEs in PM is strongly associated 
with ecological problems in water and soil (Astuti et 
al., 2021b; Damian et al., 2018). Previous studies 
recorded high levels of Hg and Cr in soil near 
residential areas around a cement plant (Mallongi et 
al., 2020), while the presence of Cr (VI) and SiO2 
found in groundwater wells (Rauf et al., 2021b; Astuti 
et al., 2021c). However, there are no recent studies 
regarding the presence and accumulation of PTEs in 
ambient air across the region. So, it is necessary to 
evaluate the levels of PTEs in the air and the 
ecological risk estimation in the study area for 
preparing the policy adjustments to reduce PTEs 
exposure in environments and residential areas. 

In this work, the seasonal variations of PTEs 
concentration are used to determine the ecological 

risk through pollution load index (PLI) and potential 
ecological risk index (PERI). Deeper knowledge of 
the distribution and the levels of PTEs in Eastern 
Indonesia will be beneficial to the investigation of 
chemical potential effects in Maros karst area and 
human well-being. 
 

2. METHODS 
 
2.1. Study Area 
 
The sampling location is located around Maros 

regency in South Sulawesi, Indonesia, which is a very 
famous for limestone karst area, cave complex and 
prehistoric art that covers an area of ~ 450 km2 
between 4°7’S and 5°1’S (Huntley et al., 2021). This 
area is a nationally protected as a national park in 
Indonesia because it has abundant natural resources 
for the unique cone karst and hosts the richest hot-
spot of tropical cave biodiversity (Hoch et al., 2011). 
Maros karst has rock layers or river underground in 
the almost 300 caves. The groundwater resources are 
used for drinking water and domestic purposes for the 
surrounding community. Unfortunately, during the 
last few decades there have been exploitation 
activities around this area. Several industrial 
activities operating around this area such as marble 
factories, cement plant and local rock mining. The 
local emission and vehicle smoke from the loading 
activities near residential areas also possible to affect 
the conditions of vegetations, air quality and even 
affect the health of the local residents.  The sampling 
site is surrounded by karst hills, agricultural land and 
wetlands. 
 

2.2. Sampling Collection 
 

The particulate matter was collected from 9 to 
30 November 2020 (wet season) and 23 July to August 
2021 (dry season). The sampling location is located in 
Bantimurung sub-district, approximately 35 km North 
of Makassar city. Sampling was carried out around 
residential areas and located at least 300-500 m from 
the roads. A high-volume air sampler (HVAS) 
(Staplex TFIA 2) was used to collect the PTEs samples 
in the form of particulate matter for 24 hours in (seven 
days in each season). Ambient air that contains 
particulate matter is drawn by a fan into the HVAS 
with the help of a suction pump. Particulates trapped 
in the filter paper will be wrapped in aluminium foil 
before being analysed in the laboratory. The PTEs, 
including Cr, Pb, Cu, Al, As, Ni and Zn were measured 
by inductively coupled plasma optical emission 
spectrometry (ICP-OES). The calibration curves were 
linear and greater than 0.995). 
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Figure 1. Study area and sampling locations in Maros Regency. 

 
2.3. Pollution Level Assessment 

 
2.3.1. Potential Ecological Risk Index (PERI) 

This index developed by Hakanson (1980). 
The potential ecological risk in ambient air were 
calculated by using Er and risk index (RI) (Hakanson, 
1980). The following equations were used to 
calculate potential risks: 
 

𝐶𝐶𝑓𝑓𝑖𝑖 =
𝐶𝐶𝑑𝑑𝑖𝑖

𝐶𝐶𝑖𝑖𝑟𝑟
                𝐸𝐸𝑟𝑟𝑖𝑖 = 𝑇𝑇𝑟𝑟𝑖𝑖 𝑥𝑥 𝐶𝐶𝑓𝑓𝑖𝑖   

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = �𝐸𝐸𝑟𝑟𝑖𝑖
𝑛𝑛

𝑖𝑖=1

  
 

where 𝐶𝐶𝑓𝑓𝑖𝑖 is the metal pollution for a single element, 
𝐶𝐶𝑑𝑑𝑖𝑖  is the metal(s) concentration from the site, 𝐶𝐶𝑟𝑟𝑖𝑖  is 
the background concentration of metal in examined 
environment. The level of metal contamination was 
classified as low for 𝐶𝐶𝑓𝑓𝑖𝑖 < 1, moderate for 1 ≤ 𝐶𝐶𝑓𝑓𝑖𝑖< 3, 
considerable for 3 ≤ 𝐶𝐶𝑓𝑓𝑖𝑖 < 6, and very high for 𝐶𝐶𝑓𝑓𝑖𝑖 ≥ 6. 
𝐸𝐸𝑟𝑟𝑖𝑖  is the potential ecological risk for a single metal, 
𝑇𝑇𝑟𝑟𝑖𝑖 is the toxicity coefficient for metal i, and RI is a 
multiple metals ecological risks at a single site. The 
toxicity coefficients of Pb, Zn, Ni, Cu, Cr, Cd, Mn 
and As were 5,1,5,5,3,30,1 and 10, respectively. 

PERI can be categorized as follows, PERI < 40, low 
risk; 40 ≤ PERI < 80, moderate potential risk; 80 ≤ 
PERI < 160, considerable potential risk; 160 ≤ PERI 
< 320, potential risk; PERI ≥ 320, very high risk. 
 

2.3.2. Pollution Load Index (PLI) 
The degree of metal pollution from the ambient 

air was evaluated by applying Pollution Load Index 
(PLI) (Tomlinson et al., 1980). PLI values of 
measured metal contamination in sediment, soil and 
dust across the study site and control area generally 
found less than 1 (Ekwere & Edet, 2021). PLI 
calculated by the following equation. 
 

𝑃𝑃𝑃𝑃𝑃𝑃 = �𝐶𝐶𝑓𝑓1 𝑥𝑥 𝐶𝐶𝑓𝑓2 𝑥𝑥 𝐶𝐶𝑓𝑓3 𝑥𝑥. . . 𝑥𝑥 𝐶𝐶𝑓𝑓𝑖𝑖  �1/n 
 

Where i is the number of pollutants and 𝐶𝐶𝑓𝑓𝑖𝑖  is the 
value of the contamination factor from the previous 
equation. The degree of PLI can be categorized as 
follows, no pollution for PLI <1, moderate pollution 
for PLI =1 and deterioration of the site quality PLI>1. 
 

2.3.3. Statistical Analysis 
All statistical and mathematical analysis were 

performed by using SPSS version 24.0 and Microsoft 
Excel 2018. For the spatial distribution of PERI and 
PLI, we applied gridding method from Golden 
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Software Surfer 16 version. 
 

3. RESULT AND DISCUSSION 
 

3.1. PTEs concentration 
 
The average concentration of PTEs in the study 

area is presented in Figure 2. This data adapted from 
our previous work and proved that particulate matter 
was enriched by PTEs (Rauf et al., 2021c). In this 
study, Zn is the most abundant element among the 
metals studied in particulate matter. The presence of 
Zn in the atmosphere is the result of mining, coal 
burning and burning waste (ATSDR, 2005). A similar 
result was discovered in Southern China, where Zn 
accounts for roughly 60% of the total trace element 
(Sun et al., 2015). The significance of high amounts of 
Zn agrees with earlier observation in Nigeria 
(Olumayede & Ediagbonya, 2018), that far above the 
standard limits prescribed by WHO for respirable dust. 
This element is widely distributed in the earth’s crust 
and mainly occurs from sphalerite rock, a major source 
of Zn that strongly associated with Pb and Fe (USEPA, 
1969). Combustion processes around industrial areas 
can cause isotope fractionation of Zn due to redox 
effects (Schleicher et al., 2020). Karst quarries, 
limestone mining for cement production and marble 
factories around study sites may contribute to the high 
Zn and Al through combustion or crushing process and 
the release of dust through the stacks. 

Arsenic (As) is one of the most dangerous and 
deadly metals on earth. The presence and high 
concentration of As in the air around residential areas 
indicates further degradation of the environment. The 
environmental-friendly method for As removal, 
strict regulations and emission control of 
anthropogenic activities around the study area are 
highly recommended. The existence of industrial 
activities correlated with biomass burning will produce 
dust from combustion. In Mazarrón, Spain, waste 
mines are the main source of several metals in dust, 
including As, Fe, Pb and Zn (Gabarrón, et al, 2018). 

Transportation and distribution activities of 
industrial products also contribute to the high silt load, 
resuspension and accumulation of PTE in the air 
(Alshetty et al., 2022). A similar study in China proved 
that PM was driven by the air mass dispersion during 
the winter and spring seasons, which was mostly 
caused by traffic and fossil fuel emissions, particularly 
at night (Liu et al., 2022). The condition of the study 
area that is passed by transportation of cement 
production with high intensity every day can cause a 
high ecological risk, as happened at a cement factory 
in Ewekoro, Nigeria (Laniyan & Adewumi, 2020) and 
Dalian, China (Fan et al., 2021).  

Spatial variations show that the number of PTEs 
was significantly higher in the dry season, except for 
Ni and Al. The dry season will increase the air 
temperature so that the particulates can be transported 

 
Figure 2. Potentially toxic elements concentration (µg/m3) in wet and dry season.
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further from the source (Rauf et al., 2021c). However, 
in both seasons, the concentrations of As, Cr and Pb 
exceeded the minimum limits set by WHO. The high 
concentration of these metals is possibly correlated 
with the increase of anthropogenic activity in this 
region. The cement plant and traffic roads that can 
produce smoke and particulate matter are associated 
with the high levels of PTEs (Kolo et al., 2018). These 
results were in accordance with a previous study in 
Ibadan city, where concentrations of Pb, Zn, and Cd 
were greater than their corresponding background 
values during dry seasons (Odediran et al., 2021). In 
India, the crustal elements, including Al, Si, Ca, Fe, 
and Ti were high during the pre-monsoon seasons, 
potentially due to high wind speeds (Nirmalkar et al., 
2021). Cement factories produce harmful pollutants 
due to coal combustion, which at high temperatures 
will release harmful metals such as Hg, Cd, Co and 
Cr and pollute the environment around the factory 
(Fan et al., 2021; Kolo et al., 2018). 
 

3.2. Pollution Level Assessment 
 

The determination of PERI and PLI values was 
carried out for PTEs (As, Cr, Cu, Ni and Pb). Since 
Al does not have a background value, this element 

was not considered in the ecological risk assessment 
of this paper. The PERI values in residential areas 
descended in order as follows: site 3> site 4> site 1> 
site 6> site 2> site 5. PERI values showed extremely 
high potential risks in three residential areas; site 2 
(163.76), site 5(201.64) and site 6 (163.67). Site 5 
and site6 are located in the Southeast area of the 
cement factory and surrounded by the karst hills that 
lie to the North and Northeast. On the other hand, 
PERI values classified as considerable risk for site 1 
(133.31), site 3 (100.24) and site 4 (115.70). These 
findings indicate the accumulation of PTEs in this 
area was extremely polluted and harmful for 
ecosystem. The high accumulation of PTEs in an area 
can result the disrupting in ecosystem. For example, 
dry deposition from the air can fall to the ground and 
accumulate over a long period of time. The presence 
of PTEs interferes the plant growth around the 
contaminated sites. Some plants can uptake large 
quantities of Cd, Pb and Cr in their root systems 
(Ibrahim et al., 2021). 

A study in Sri Lanka found that most of the 
accumulated PTEs are mainly concentrated in the 
leaves of the grape tree rather than in the fruit, which 
will inhibit the process of plant growth and 
photosynthesis (Prabagar et al., 2021). 

 

 
Figure 3. The PERI and PLI of PTEs accumulation in study area. 
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The PLI values of the metal in all sites were 
greater than 1; site 1 (21), site 2 (3.9), site 3 (2.0), site 
4 (6.3), site 5 (63) and site 6 (346), indicating the 
accumulation of PTEs in PM can decreasing the 
ecological quality in all sites. The organisms around 
those locations may highly exposed by PTEs, where 
the highest values were recorded in site 6. The 
contribution of biomass burning aerosols that 
potentially emitted during dry season may play an 
important role. Moreover, the local emission from the 
industrial activities needs to be considered. A study 
conducted by Zhao (Cai & Li, 2019), revealed that the 
strength of precipitation in rainy days and the falling 
dust reflected the background characterization of 
particulates in the air which attributed to the regional 
anthropogenic activity and low atmospheric 
circulation. The spatial distribution of PERI and PLI 
of the PTEs in the study area is using Empirical 
Bayesian Kriging. Figure 3 shows the spatial 
distribution of pollution levels (PERI and PLI) in dry 
and wet season. These results are consistent with the 
previous study (Rauf et al., 2021c), where the 
particulate matter is higher and concentrated in the 
East and Southeast area. This is influenced by the 
prevailing winds which carry dust and other particles 
towards the settlements area. 

The areas with the highest level of ecological 
risk (PLI and PERI) in the dry season are Baruga and 
Tukamasea village. This area are residential areas 
surrounded by karst towers, hills, rice fields and 
inhabited by residents before industrial activities 
began more than three decades ago. Dry season with 
less humidity and winds that blow predominantly 
towards the East and Southeast greatly contribute to 
the distribution of PTEs in the study area. This result 
proves the relationship with previous studies where the 
distribution of wind and dry deposition will bring 
particulates to move and fall to the ground near the 
area where people live (Rauf et al., 2020). Different 
results were obtained from PERI value in the wet 
season, which indicated that the level of ecological risk 
was more concentrated and higher in the Northwest. 
This area is the main route for transportation of cement 
products and traffic roads 

 
4. CONCLUSION 

 
In this study, the ecological risks and seasonal 

levels of PTEs, including Cr, Pb, Cu, Al, As, Ni and 
Zn in PM samples were determined. The mean 
concentrations of Cr, Pb, Cu, As and Zn were 
extremely higher in dry season than wet season, 
whereas the concentration of Ni is not detected or 
below the detection limit in dry season. The PERI and 
PLI values indicate that the closest location to 

industrial activities and traffic roads posed higher 
ecological contamination. The spatial distribution of 
PERI and PLI values showed the hotspot maps of 
PTEs were located in the East and Southeast areas. 
This study demonstrates the power of spatial machine 
learning techniques to show the environmental 
condition of residential areas around Maros karst. 
Thus, preventive efforts to reduce the concentration of 
PTEs must be carried out by the government and the 
environmental department of all related industries. 
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