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Abstract: The monthly air quality index (AQI) derived from ground observation stations that obtained 
daily air pollutants information for 1990- through 2010 was analyzed in this study. AQI was evaluated 
using the common comparative index method presented by the U.S. Environmental Protection Agency 
(USEPA), and a statistically based approach was used for predicting the AQI value. With the first method, 
AQI was predicted using the USEPA subindex formula for different pollutants, such as particulate matter 
and sulfur dioxide, which contribute the most to air pollution. A combination of the principal component 
analysis (PCA) and multiple linear regression (MLR) methods were used with the measured values of 
climate variables obtained from the ground stations for the most effective contributors and a prediction was 
modelled. The results of these two methods were compared and evaluated for consistency. Two methods 
were presented for determining the AQI value. According to the findings, the common comparative index 
method was consistent with the statistical prediction models, and the best results were obtained using PCA 
models with varimax rotation. 
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1. INTRODUCTION 
 

Environmental pollutants have gained worldwide 
attention in recent years. In particular, air pollutants 
have caused several problems in urban areas, and some, 
such as particulate matter of smaller than 10 or 2.5 
microns (particulate matter PM10 or PM2.5) and sulfur 
dioxide (SO2), reduce air quality and adversely affect 
human health.  

The concentrations of air pollutants are measured 
at ground monitoring stations. These values are then 
determined to be index values for reporting the urban 
AQI, also expressed as the air pollution index (API). 
These values are calculated using several air pollutants, 
such as PM10 and PM2.5, SO2, ozone (O3), nitrogen 
dioxide (NO2), and carbon monoxide (CO). The sources 
of air pollutants may be natural or from anthropogenic 
activities, but the urban air pollutants come mostly from 
anthropogenic activities, such as fossil fuel combustion, 
traffic, heating, and a rapid population increases. These 
actions affect the climate system and degrade the air 
quality in urban areas. Air pollutants, such as PM10, and 
SO2, also affect the quantity of sunshine duration 
(Zateroglu, 2021a). Environmental variables, such as air 
pollutants and climate elements, interact within the 

atmospheric circumference, which is a thin sheet of air 
that extends from the surface of the Earth to the edge of 
space (Zateroglu, 2021b). Further, Kori et al., (2019a) 
studied the ambient AQI for industrial areas in India. 
Kori et al., (2019b) assessed the ambient AQI and found 
generally moderate levels of PM10, PM2.5, and SO2 
because of the standard limits in India. 

In 1976, the U.S. Environmental Protection 
Agency (USEPA) introduced a Pollutant Standards 
Index (PSI) to measure air quality within a range 
between 0 and 500 based on National Ambient Air 
Quality Standards (NAAQS), then revised and renamed 
it in 1999 as AQI (Cheng et al., 2007; Monteiro et al., 
2017). AQI, also known as the Air Pollution Index 
(API) (Kanchan et al., 2015), is a very important 
parameter by which people can determine when the air 
quality is good or bad, especially for human health. The 
AQI value is determined using the calculated index 
values of all pollutant concentrations measured in the 
ground-based monitoring stations. It is calculated as an 
index value using the common comparative index 
method. In addition, new AQI systems were created by 
researchers (Cairncross et al., 2007; Hu et al., 2015; Li 
et al., 2018; Trivero et al., 2012). 

The amount of air pollutants is measured at 
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ground-based monitoring stations; however, air 
pollutants cannot be measured at some locations in 
which monitoring stations are limited or absent. In 
addition, the USEPA AQI formula considers only the 
concentrations of pollutants and the pollutant with the 
biggest index value. Those with small index values 
together with meteorological factors that have crucial 
effects on air pollutants (i.e., air quality) are not included 
for AQI assessment. These constraints require the use of 
alternative methods to evaluate AQI by considering 
other factors. In addition, a new approach has been 
proposed by Gibergans-Baguena et al., (2020) because 
of USEPA’s lack of a standardized scale that disregards 
the compositional nature of the concentrations of air 
pollutants. 

Air pollution models, in general, use the 
Pasquill–Gifford–Turner (PGT) protocol to predict 
horizontal and vertical dispersion of a plume 
(Venkatram, 1996). These prediction models usually 
operate the Gaussian models that consider steady-state 
atmospheric conditions, such as constant wind speed 
and spatial homogeneity or flat terrain, to determine the 
dispersion of concentrations by taking into account the 
sources of the pollutants (USEPA, 1993). This method 
determines the stability of an atmospheric region by 
considering the horizontal surface wind, the amount of 
solar radiation, and the fractional cloud cover. To 
determine the atmospheric turbulence, the PGT scheme 
considers six stability classes from A to F, with class A 
being the highly unstable or most turbulent level, and 
class F being the extremely stable or least turbulent level 
and arranged according to wind speed, wind direction, 
solar radiation and cloud cover. The PGT scheme also 
considers the vertical temperature gradient; however, 
statistical models are preferred for predictions over 
Gaussian models because of requiring detailed 
information on the parameters (e.g., pollutant sources 
and the other variables). 

Different statistical analysis methods are used for 
predicting AQI. The most commonly preferred ones by 
researchers are the principal component analysis (PCA) 
and multiple linear regression (MLR) methods and a 
combination of the two (Abdul-Wahab et al., 2005; Al-
Alawi et al., 2008; Rajab et al., 2013; Sousa et al., 2007; 
Statheropoulos et al., 1998). In some studies, the nueral 
network approach was used to predict air pollutant 
concentrations (Boznar et al., 1993; Slini et al., 2006). 
Cotta et al., (2020) used the PCA method to identify 
unnecessary air quality monitoring stations. In addition, 
Lu et al., (2011) also used PCA to evaluate the 
performance of air quality monitoring networks, and 
Ibarra-Berastegi et al., (2009) and Sanchez et al., (1986) 
used PCA to assess the variability of SO2. Comrie 
(1997) examined the neural network and regression 
analysis methods to predict ozone concentrations. 

Similarly, Finzi & Tebaldi (1982) constructed the 
mathematical models to predict pollutant 
concentrations. In addition, the meteorological variables 
were taken into account to estimate air pollutants using 
the statistical models (Cogliani, 2001; Sanchez et al., 
1990; Ziomas et al., 1995). 

MLR is one of the most commonly studied 
methods in climatic and atmospheric studies by 
determining a dependent variable using contributing 
independent variables. To avoid multicollinearity 
between independent variables, PCA is used, which is 
the preferred method in prediction studies. In many 
cases, the use of both methods is more convenient for 
more reliable results. 

AQI within a specified region is influenced by 
climate elements and their interactions among air 
pollutants, transportation and deposits of pollutant 
concentrations. Wind speed, atmospheric pressure, 
relative humidity, precipitation, and air temperature 
affect the distribution and quantity of pollutant 
concentrations in the air. Wind speed and direction are 
considerable factors that help disperse and transport air 
pollutants into or out of the area based on prevailing 
winds and topography. Low- and high- pressure also 
affect pollutants. In low-pressure (cyclone) systems, air 
moves vertically to disperse pollutants; whereas, in 
high-pressure (anticyclone) systems, air moves 
downward, which does not disperse pollutants. Relative 
humidity facilitates the formation of precipitation and 
atmospheric heat absorption, which warms lower areas; 
however, under high relative humidity conditions, SO2 
reacts with water droplets in the atmosphere to form 
sulfuric acid (H2SO4), which degrades the environment. 
Under conditions of relative humidity, high pressure and 
warming, evaporation (water vapor) is slow, which 
changes with latitude (i.e., slow in the North; high in the 
South). Precipitation is a crucial parameter in air 
pollution. Raindrops that uptake solid and gaseous 
pollutants in the air and bring them down to earth wash 
out the atmosphere. Air temperature is a factor in 
burning combustible materials and in using heat in 
various buildings, which leads to an increase in the 
amount of air pollutant concentrations. In addition, air 
pollutants scatter and absorb the incoming solar 
radiation and reduce the direct solar radiation necessary 
to measure the sunshine duration. Tropospheric 
aerosols, which have a short lifetime of days or weeks, 
behave similarly to cloud condensation nuclei and 
contribute to the formation of cloud droplets that may 
fall as snow or raindrops.  

Although not a source of air pollutants, 
topographical structures affect their levels and duration 
within the environment. Air Pollution is more 
concentrated in bowl-shaped topographic areas or in 
areas that form of a perpendicular groove that extends to 
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the prevailing wind direction. The concave area 
surrounded by hills or mountains prevents air circulation 
and, thus, dispersion of air pollutants. 

The main purpose of the present study was to 
present an alternative to the USEPA method for 
calculating AQI using climate elements and air 
pollutants. Climate elements measured in a 
meteorological station, such as sunshine duration (SD), 
cloudiness (CLD), relative humidity (RH), wind speed 
(WS), precipitation (PREC), air temperature maximum 
(TMAX) and minimum (TMIN), evaporation (EVP), 
and atmospheric pressure (PRES) were used to 
construct the statistical models to predict AQI. Air 
pollutants were selected based on accessibility and 
persistence of data at the station in which the 
measurements were recorded, and PM10 and SO2 levels 
were the parameters of concern.  

In the present study, the AQI value was 
calculated using the USEPA formula, after which two 
estimation methods were applied to the dataset. First, the 
stepwise linear regression analysis was evaluated for 
AQI. Second, PCA was studied to reduce the number of 
independent variables and determine the ones that were 
the most significant. Using PCA with regression models 
minimizes the collinearity of the datasets, which can 
lead to worst estimations and also defines the 
appropriate explanatory variables for the estimation of 
pollutant concentrations (Sousa et al., 2007). 

To verify effectiveness of simulation, the results 
were compared for two estimation approaches. 
Thereafter, the findings were elicited from interpreting 
the obtained values. 
 

2. STUDY AREA AND DATA 
 

Bolu is in northern Turkey (latitude between 
40o06ı and 41o01ıN, longitude between 30o32ı and 
32o36ıE) (Fig. 1) and encompasses an area of 8323.39 
km2. The land comprises mountains spanning north to 
south and to the east and plains from west to east. The 
mountainous region is 56% of the total area; the plains 
are 8%. There are several lakes and streams within the 
area. The climate in Bolu changes based on the 
topographical structure. These different climate 
characteristics are known as a “continental temperate 
climate”. The temperate west Black Sea climate, with 
rains and lower temperatures than the other Bolu areas, 
influences the northern region. The southern region is 
dominated by the Anatolia climate in central Anatolia, 
which is continental, with cold winters, hot and dry 
summers, and less rainfall than in other areas. Between 
the northern and southern regions, a subregion of the 
Black Sea climate, or a transitional climate type, 
dominates the area and encompasses the characteristics 
of both climates. In addition, the climate in Bolu is 

classified as C2, Bı1, s, and bı3 according to the 
Thornthwaite climate classification. Within the 
province, the dominant wind directions are west and 
south. The annual average WS is 1.4 m/s with a 
maximum WS of 24.4 m/s. Most of the territory is 
humid, with the remaining areas subhumid. The area 
receives frost during winter months and the highest 
temperatures during July (39.3oC) and August (39.8oC). 
The mean high temperature is in August (27.9oC) and 
the mean low temperature in January (-3.6oC). Annual 
average mean temperature, TMAX and TMIN are 
10.5oC, 17.1oC, and 4.7oC, respectively. The amount of 
PREC is high in December, January, and May and low 
in July and August. Annual average RH is ~72%. The 
lowest RH is in July and August with the highest in 
January, February, and November. In winter, SD is less 
than in summer. Annual total SD is 2250 h in the north 
and 2500 h in the south with an anuual average of 5.5 h. 
Average SD is low in December and January (both 2.1 
h) and high in July (9.2 h) and August (8.9 h). Average 
annual total rainfall in Bolu is ~550 mm, with 30% of 
annual rainfall in winter, 29% in spring, 20% in summer 
and 21% in autumn. There is an average of ~138 rainy 
days. Annual average PRES is 930 hPa, with maximum 
and minimum PRES of 943.5 and 913.5 hPa, 
respectively.  

According to the Turkish Statistical Institution 
(2020), Bolu has a population of 314,802 of whom 
227,724, (~72%) live in urban areas and 87,078 (~28%) 
in rural areas. There are 118,375 vehicles within the 
province of which 57,743 are cars, 1,523 are minibuses, 
934 are buses, 17,122 are small trucks, 6,034 are trucks, 
12,092 are motorcycles, 511 are special-purpose 
vehicles, 22,416 are tractors. The emissions from these 
vehicles contribute to poor urban air quality.  

Together, all state and provincial roads within the 
research area extend 679 km (General Directorate of 
Highways of Turkish Republic, 2020). Classified by 
surface types, there are 666km of asphalt of which 300 
and 39 km are in provincial and surface treatment, 
respectively, and 366 km of which 257 km are in 
provincial, 2 km are stone block (in provincial), and 11 
km are primitive (in provincial). The road density, 
defined as the ratio of the length of state and provincial 
roads to the province’s land area within the research area 
is 8.16 km/100 km2 at 8323.39 km2. There are no 
subways or trams in Bolu. The annual average daily 
traffic (vehicle/d) in Bolu can be determined for 
motorways with 140,205 vehicle/d and state roads with 
107,535 vehicles/d (such as 77,584 cars, 8,065 medium-
goods vehicles, 998 buses, 7,804 trucks, and 13,086 
articulated trucks) (General Directorate of Highways of 
Turkish Republic, 2020). 

In addition, there are several types of industries 
in Bolu that mainly produce forest products and 



122 

furniture, food, metallic goods, the heat glass and 
tempered glass, and electrical equipment, woven 
apparel and leather.  

Air quality for the province is within the good 
ranges. Winter is the worst time for air pollution because 
fossil fuel is burned for heat. The main emission sources 
originate from increased motor vehicles emissions, 
topographical structure, and domestic heating. Coal, 
wood, liquid fuel (diesel), and natural gas are used for 
domestic heating. Because of the topography in the 
province, the air pollutants are not removed by air 
circulation. In addition, mining activities, such as 
cement and lignite quarries, cause dust emissions. 

The ground based meteorological station is 
located in the center of Bolu (latitude 40o43ıN, longitude 
31o36ıE). From 1990 through 2011 at the 
meteorological station site, only two pollutants, PM10 
and SO2, were measured at the air quality traffic station, 
which was active until 2017 and operated by the 
Ministry of Environment and Urbanization. There were 
residential areas and state roads within the vicinity of the 
station. Climate data, such as SD, CLD, RH, WS, 
PREC, TMAX, TMIN, EVP, and PRES, were obtained 
from the Turkish State Meteorological Service for 
1990–2011. For the same period, the values for PM10 
and SO2 were obtained from the Turkish Statistical 
Institution and Ministry of Environment and Urbanism. 

 
3. METHODS  

 
Statistical analyses were conducted based on 

monthly climate variables. PCA and MLR methods 
were used to estimate the long-term AQI in Turkey 

using the meteorological parameters (SD, CLD, RH, 
WS, PREC, PRES, EVP, TMIN, and TMAX) as 
predictors. The combined PCA and MLR methods are 
called the Principal Component Regression (PCR) 
method. 

AQI for a location is determined from five 
pollutants—PM10, SO2, O3, NO2, and CO—in the 
USEPA system. AQIs have been separated into the 
different categories according to their health effects. If 
an index value is >100, it is unhealthy for sensitive 
groups that have different diseases, such as respiratory 
problems and asthma. 

AQI for all pollutants is determined using the 
USEPA method, which is based on the concentrations 
of the pollutants. For each pollutant, an index value is 
calculated using the following equation: 
 

𝐼𝐼𝑝𝑝 =  � (𝐼𝐼𝐻𝐻𝐻𝐻−𝐼𝐼𝐿𝐿𝐿𝐿)
(𝐵𝐵𝐵𝐵𝐻𝐻𝐻𝐻−𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿)�  �𝐶𝐶𝑝𝑝 − 𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿� +  𝐼𝐼𝐿𝐿𝐿𝐿              (1) 

where Ip, Cp, BPHi, BPLo, IHi and ILo are expressed as the 
index value for pollutant p, the concentration value of 
the pollutant p, the breakpoint that is equal to or bigger 
than Cp, the breakpoint that is equal to or smaller than 
Cp, the index value determining to BPHi and the index 
value determining to BPLo respectively. each 
calculated pollutant index Ip, as determined in Eq. (2). 
 

AQI = Max(I1, I2, ….., Ip), p = 1, 2, ….,5   (2) 
During 1990–2011, only PM10 and SO2 

pollutants were measured at the Bolu station; 
therefore, the USEPA table for breakpoints has been 
used for only those two pollutants in Table 1 to 
determine AQI.  

 

 
Figure 1. Turkey and the location of Bolu Province 
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Table 1. United States Environmental Protection Agency breakpoints of air pollutants for the air quality index (AQI) 
(EPA, 1999) 

Breakpoints             AQI    Category 
O3 (ppm) 

8-hour 
O3 (ppm) 
1-hour1 

PM10 
(µg/m3) 

PM2.5 
(µg/m3) 

CO 
(ppm) 

SO2 
(ppm) 

NO2 
(µg/m3) 

  

0.000-0.064 - 0-54 0.0-15.4 0.0-4.4 0.000-
0.034 

(2) 0-50 Good 

0.065-0.084 - 55-154 15.5-40.4 4.5-9.4 0.035-
0.144 

(2) 51-100 Moderate 

0.085-0.104 0.125-
0.164 

155-254 40.5-65.4 9.5-12.4 0.145-
0.224 

(2) 101-150 Unhealty 
for 

sensitive 
groups 

0.105-0.124 0.165-
0.204 

255-354 65.5-
150.4 

12.5-15.4 0.225-
0.304 

(2) 151-200 Unhealty 

0.125-0.374 0.205-
0.404 

355-424 150.5-
250.4 

15.5-30.4 0.305-
0.604 

0.65-1.24 201-300 Very 
unhealty 

(3) 0.405-
0.504 

425-504 250.5-
350.4 

30.5-40.4 0.605-
0.804 

1.25-1.64 301-400 Hazardous 

(3) 0.505-
0.604 

505-604 350.5-
500.4 

40.5-50.4 0.805-
1.004 

1.65-2.04 401-500 Hazardous 

1 Generally AQI is reported by using 8-hour ozone values. Anyway, for some areas, AQI is evaluated using both 1- and 8-h ozone (O3) 
levels and reported as the maximum of each. 
2 NO2 has no short-term National Ambient Air Quality Standards (NAAQS) and can generate AQI if it is >200. 
3 For higher AQI values (301-400 and 401-500), 1-h O3 concentrations are used instead of 8-h O3 concentrations. 
 

All air pollutants were defined as µg/m3 before 
calculating AQI in the present study. The values for 
SO2 were revised to reflect those units as ppm in 
Table 1. SO2 breakpoint values in µg/m3 were used in 
the Cairncross (2007) study to delineate the 
categories as follows: good, 0–90 µg/m3; moderate, 
93–383 µg/m3; unhealthy for sensitive groups, 386–
596 µg/m3; unhealthy, 599–809 µg/m3; very 
unhealthy, 811–1607 µg/m3; hazardous for AQI 301–
400, 1609–2139 µg/m3; and hazardous for AQI 401–
500, 2141–2671 µg/m3. 

In the beginning of the analyses, daily values 
of pollutant concentrations were transformed into 
index values and used to define the daily AQI. 
Because of the missing values in the dataset, daily 
AQI values were converted into monthly average 
AQI values. This transformation was necessary for 
reliable analyses, so that they were compatible with 
the meteorological parameters. 
 

3.1. Multiple linear regression (MLR) 
 

The MLR method has been generally used by 
researchers to estimate AQI values. Climate data are 
fit to normal distribution, which assumes that the data 
have equal variance and the deviation between 
observed and estimated values of response variables 
are independent. MLR analyses can be used as 
statistical prediction methods in many applications, 
such as climatological studies, because of the 
compatibility with normal distribution. In this method, 

a response variable is predicted using two or more 
explanatory variables. This relationship is determined 
using the mathematical model shown in Eq. (3). 
 

Y = a0 + a1X1 + a2X2 + ………..+ arXr + Ɛ    (3) 
 

where Y denotes the response variable; X1, X2, ……, Xr 
are explanatory variables; ao and a1, a2, ……., ar 
determine the constant and coefficients of regression, 
respectively; and Ɛ identifies the error term that was 
estimated. To minimize the error term, the least squares 
method was used to predict the constant and coefficient 
values of the regression model using the coefficient 
matrix a in dimension r x 1. Matrix a is defined by a = 
(XTX)-1(XTY), where r is the number of independent 
variables, n is number of observations, Y is the observed 
value of the matrix in dimension n x 1 of the response 
variable, X is the observed value of the matrix in 
dimension n x r of the explanatory variables, and XT 
determines the transpose of X. F distribution and the 
Student’s t-test are used to determine the significance 
levels of the constant and coefficient values. Model 
consistency is determined using the estimation error and 
coefficient of determination. All prediction models have 
been constructed as statistically significant at a 95% 
confidence interval (CI). 

The determination coefficient, R2, denotes the 
percent value of the variance in the response variable, 
which is expressed by the explanatory variables in the 
model. The multiple determination coefficient value 
of a regression model that reveals the estimated 
success is determined using Eq. (4) as follows:  
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𝑅𝑅2 = 1 − ∑�𝑌𝑌𝑒𝑒,𝑖𝑖−𝑌𝑌��
2

∑�𝑌𝑌𝑜𝑜,𝑖𝑖−𝑌𝑌��
2  (4) 

 

where 𝑌𝑌𝑒𝑒 is the estimated value of 𝑌𝑌𝑖𝑖, 𝑌𝑌𝑜𝑜 is the 
observed value of 𝑌𝑌𝑖𝑖, and 𝑌𝑌� is the mean value of the 
observed values 𝑌𝑌𝑖𝑖𝑠𝑠. The value of R2 is between 0 and 
1, which indicates that when the value is closest to 1, 
the model is appropriate with the data. 

Standard Error of Estimation (SEE) is 
expressed as amount of the distinction between the 
estimated and measured values. It is calculated using 
the following formula:  
 

𝑆𝑆𝑆𝑆𝑆𝑆 = �∑(𝑌𝑌𝑜𝑜−𝑌𝑌𝑒𝑒)2

𝑛𝑛−2
   (5) 

 

where Yo determines the observed value, Ye is the 
estimated value and n is the number of observations. 
 

3.2. Principal component analysis (PCA) 
 

Using SPSS ver. 25 (IBM Corp., Armonk, NY, 
USA), PCA was evaluated to determine the 
significance order of the meteorological parameters 
and reveal the interrelated structures as well as their 
influence on AQI. The obtained PCA scores of the 
meteorological variables were applied as explanatory 
variables (Xi, so that i = 1,2,3….) to MLR analysis to 
estimate AQI as a response variable (Y). 

Bartlett’s sphericity test (χ2 with degrees of 
freedom equal to the formula k (k-1) / 2) was used to 
confirm the applicability of PCA to the sequence data 
(Stevens, 1986). The PCA scores’ eigenvalues were 
acquired using the following equation (Johnson & 
Wichern, 1982): 
 

|𝐷𝐷 − 𝜆𝜆𝜆𝜆| = 0  (6) 
 

where D, 𝜆𝜆, and I denote the correlation matrix in the 
k x k dimension, eigenvalue vector, and identity 
matrix, respectively. In addition, the standardized 
weight values of the variables of the principal 
components were obtained using Eq. (7). 
 

(𝐷𝐷 − 𝜆𝜆𝜆𝜆)𝑉𝑉 = 0    (7) 
 

where V defines the k x k dimension matrix, and the 
variables of the principal components’ standardized 
weights (vij) are included using the V matrix. Each 
variable’s weight and eigenvalue were calculated using 
the D matrix. In the analyses, the factor loadings without 
rotating were found using eigenvector. Then, with the 
varimax rotation, the values of the rotated factor 
loadings, Cim, which determine the contributions of the 
variables as a percentage of the related principal 
components, were acquired (i is the variable number, m 

is the principal component number). The variables were 
classified using the values of loadings for each principal 
component. Score values were calculated using Eq. (8). 
 

𝑠𝑠𝑚𝑚𝑚𝑚 = 𝑣𝑣1𝑚𝑚𝑧𝑧1𝑗𝑗 + 𝑣𝑣2𝑚𝑚𝑧𝑧2𝑗𝑗 + ⋯+ 𝑣𝑣𝑘𝑘𝑘𝑘𝑧𝑧𝑘𝑘𝑘𝑘    (8) 
 

where smj is the value of the standardized score, j is 
the observation number (1,2,….,n), k is the 
explanatory variables’ number, z and v are the 
standardized value and standardized weight of the 
related variable and observation, respectively. In 
addition, z was obtained using  𝑧𝑧 = 𝑥𝑥𝑘𝑘 − 𝑥𝑥/𝑠𝑠𝑥𝑥, where 
xk denotes the original values of the variables. 

The performance of the prediction models was 
evaluated using the statistical indicators shown below. 
The mean biased error (MBE), root mean square error 
(RMSE), and index of agreement (IOA) were 
calculated to determine the model suitability defined as 
an MBE and RMSE value small, ideally closer to zero 
and IOA value nearer to 1. MBE represents the 
relevance of the predicted amounts, such as 
overprediction and underprediction, and is expressed 
as positive and negative values, respectively. RMSE is 
a measure of the distinction between the estimated and 
measured data. IOA is between 0 and 1 and shows that 
the grade to that estimation is error free. 
 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝐸𝐸𝑘𝑘 −𝑀𝑀𝑘𝑘)𝑛𝑛
𝑘𝑘=1

𝑛𝑛
,  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝐸𝐸𝑘𝑘 −𝑀𝑀𝑘𝑘)2𝑛𝑛
𝑘𝑘=1

𝑛𝑛
 ,    

 

𝐼𝐼𝐼𝐼𝐼𝐼 = 1 −
∑ (𝐸𝐸𝑘𝑘 −𝑀𝑀𝑘𝑘)2𝑛𝑛
𝑘𝑘=

∑ (|𝐸𝐸𝑘𝑘 −𝑀𝑀�𝑘𝑘| + |𝑀𝑀𝑘𝑘 −𝑀𝑀�𝑘𝑘|)2𝑛𝑛
𝑘𝑘=1

  
 

where Ek is estimated value, Mk is measured value, n 
is number of measurements. 
 

4. RESULTS AND DISCUSSION 
 

Two statistical approaches, MLR and PCR, 
were used to predict the AQI for 1990–2010. The 
2011 AQI values were then used for validation. In the 
first approach, all meteorological parameters (i.e., 
SD, CLD, RH, WS, PREC, TMAX, TMIN, EVP, and 
PRES) were used as independent variables for MLR 
analyses. The best explanatory variables for the 
biggest contribution to the statistically significant 
response variable were selected using stepwise 
regression analysis. The mathematical models were 
constructed for April–September, annual, and 
seasonal terms using Eqs. (9–14). 

 
For October-March; 
No statistically significant model 
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For April-September; 
AQI = -7877.553+106.02xWS+8.334xPRES              , R2 = 0.624  , SEE = 10.11                 (9) 
For Annual; 
AQI = -24,69+110.54xWS-17.382xCLD   , R2 = 0.567  , SEE = 12.96               (10) 
For Winter; 
AQI = 274.671-1.215xSD-22.210xCLD   , R2 = 0.496  , SEE = 16.72               (11) 
For Spring; 
AQI = -91,406+84.123xWS     , R2 = 0.459  , SEE = 12.007               (12) 
For Summer; 
AQI = -172.441+103.228xWS+4.238xTMIN               , R2 = 0.729  , SEE = 8.01               (13) 
For Autumn; 
AQI = -9.249+98.868xWS-15.297xCLD   , R2 = 0.523  , SEE = 15.57               (14) 
 

In Eqs. (9–14), WS and CLD were obtained as 
common variables with the MLR method. Air 
pollutants are transported by winds. Because Bolu is 
surrounded by hills, southern winds, especially during 
the heating period, may not disperse and transport air 
pollutants. In addition, air pollutants in the atmosphere 
act as nuclei in cloud condensation and clouds. Clouds 
form when RH is high enough that the atmospheric 
water vapor condenses into tiny liquid droplets. In 
addition, cloud condensation nuclei are a subset of 
hygroscopic aerosol particles that nucleate water 
droplets at supersaturations <1%; therefore, the two 
variables are closely related to pollutants. There was 
no statistically significant model for October–March. 
WS and PRES were significant variables for April–
September. The effect of atmospheric pressure on 
pollutants changes with low and high PRES areas. In 
low-PRES systems, air moves upward, which 
disperses the pollutants; in high-PRES systems, the air 
moves downward, which does not disperse the 
pollutants. In winter, SD and CLD were obtained as 
significant variables with the prediction model. Air 
pollutants scatter and absorb the incoming solar 
radiation and reduce the direct solar radiation 
necessary for the equipment to measure SD. WS was 
the only parameter in spring. WS and TMIN were the 
significant parameters in summer. Finally, WS and 
CLD have effects on AQI for predictions in autumn. 
The predicted AQI uses the selected variables as ~62% 
in April-September, 57% in annually, 50% in winter, 
46% in spring, 73% in summer, and 52% in autumn. 
For the models, the higher R2 values accompany the 
lower SEE values. 

In addition, according to stable atmospheric 
conditions with the PGT scheme, the dispersion of air 
pollutant concentrations is closely related to WS and 
direction, CLD, solar radiation, and vertical air 
temperature gradient. 

Using PCR, the independent variables from 
MLR were selected based on the PCA components. 
The original independent variables were changed into 
principal components over the Eigenvalue variable 

matrix. Eigenvalues of variables describe most of the 
aggregate variation in the studied data (Table 2). To 
determine the best predictors of AQI, the principal 
components with Eigenvalues>1 were used (Johnson 
and Wichern, 1982). In Table 2, the Eigenvalues and 
quantity of variance of either principal component with 
Eigenvalue only >1 are shown. The other components 
with Eigenvalues < 1 were disregarded because they 
expressed a lower variance than each of the other input 
variables. Table 2 indicates that four principal 
components with Eigenvalues > 1 and having 
cumulative variance values were 75.09% for October–
March and 78.106% for autumn, and three principal 
components with Eigenvalues > 1 having cumulative 
variance values were 77.504% for April–September, 
80.175% annually, 77.671% for winter, and 71.383% 
for spring, and two principal components with 
Eigenvalues > 1 were 72.74% for summer.  

In addition, communalities of the original 
variables for all time periods were determined for each 
term (Table 3), as mentioned by using the first four 
principal components in October-March and autumn, 
three components in April-September, annual, winter, 
and spring, two components in summer. According to 
communalities, the variables > 0.70 were considered 
(Stevens, 1986). Table 3 indicates the most convenient 
original variables for PCR. Considering the results of 
communalities, the primarily appropriate variables for 
each term of PCR could be ordered as SD in October–
March, EVP for April–September, TMAX for annual, 
PRES for winter, WS for spring, EVP for summer, and 
TMIN for autumn. WS determines the horizontal 
transportation and dispersion of pollutants. High WS 
diffuse pollutant concentrations. Low WS cause haze 
episodes. However, due to geographical structure and 
wind direction conditions, high WS may not disperse 
the pollutants, reversely may contribute the 
accumulation of pollutant concentrations. In addition, 
high WS may lead to an increased EVP rate of pollutants 
and decreased pollutant concentrations. The air 
pollutant concentrations may decrease surface 
temperature by reflecting and scattering solar radiation. 
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Table 2. Eigenvalues and variances of principal components 

Terms 
Principal 

Component  Eigenvalue % of Variance 
Cumulative 
variance  % 

October-March 

1 2.418 26.872 26.872 
2 1.988 22.092 48.963 
3 1.278 14.196 63.159 
4 1.074 11.931 75.09 
1 3.717 41.305 41.305 

April-September 2 1.922 21.355 62.66 
3 1.336 14.844 77.504 
1 3.312 36.797 36.797 

Annual 2 2.418 26.867 63.664 
3 1.486 16.511 80.175 
1 3.056 38.201 38.201 

Winter 2 2.064 25.803 64.003 
3 1.093 13.667 77.671 

Spring 
1 3.526 39.174 39.174 
2 1.863 20.702 59.877 
3 1.036 11.506 71.383 

Summer 1 4.997 55.527 55.527 
2 1.549 17.214 72.74 

Autumn 

1 2.688 29.866 29.866 
2 1.749 19.436 49.301 
3 1.478 16.426 65.728 
4 1.114 12.379 78.106 

 
Table 3. Communalities of variables for different terms in 1990-2010 

Variable October-March April-September Annual Winter Spring Summer Autumn 
SD 0.858 0.803 0.812 0.76 0.804 0.834 0.905 

CLD 0.703 0.847 0.829 0.879 0.679 0.851 0.775 
RH 0.654 0.844 0.752 0.697 0.752 0.824 0.834 
WS 0.665 0.808 0.725 0.743 0.918 0.269 0.706 

PREC 0.696 0.314 0.727 0.759 0.621 0.877 0.757 
EVP 0.798 0.877 0.864 No data 0.724 0.901 0.753 

PRES 0.756 0.789 0.787 0.889 0.704 0.675 0.856 
TMIN 0.786 0.817 0.841 0.73 0.693 0.827 0.916 
TMAX 0.842 0.875 0.88 0.756 0.529 0.49 0.527 

 
Solar radiation is highly associated with SD because of 
Ansgtröm-Prescott formula in predicting global solar 
radiation; thus, pollutant concentrations have also 
influenced on SD. The reduced surface temperature 
near the ground causes a low atmospheric movement 
of pollutants, and hence an increased pollutant 
accumulation which leads to enhancement in the 
existing temperature inversion layer. Hence, the 
existing bidirectional interactions between air pollutant 
concentrations and climate parameters may conclude 
in an increase or decrease in air quality for the 
atmospheric environment. 

To obtain the best result for the relationships 
between the principal components and meteorological 
variables in PCA, rotating the components is preferred. 
The principal components were rotated orthogonally 
and obliquely. The varimax method for orthogonal 
rotation and the promax method for oblique rotation 
were used for component rotations for all terms. By 
using the rotation methods, each of the meteorological 
variables was related to only one of the principal 
components having the highest value. After the 
rotations, factor loadings were obtained that determined 
the contributions of each variable to the principal  
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Table 4. Annual results of principal component analysis with varimax rotation for 1990-2010 
Variable Loading of variables for each 

component  
Standardized weight of variables for each 

component 
1 2 3  1 2 3 

SD 0.808 -0.248 -0.312  0.325 -0.043 -0.249 
CLD -0.123 0.164 -0.887  0.077 0.156 -0.483 
RH -0.799 0.182 -0.282  -0.249 0.069 -0.069 
WS -0.154 0.449 0.707  -0.123 0.137 0.362 

PREC -0.386 0.76 0.005  -0.101 0.339 -0.021 
EVAP 0.645 -0.055 0.667  0.15 -0.054 0.286 
PRES -0.02 -0.881 0.104  -0.069 -0.429 0.143 
TMIN 0.494 0.689 0.351  0.176 0.321 0.062 
TMAX 0.909 0.213 0.096  0.335 0.142 -0.084 

 
Table 5. Annual results of principal component analysis with promax rotation for 1990-2010 

Variable Loading of variables for each 
component  

Standardized weight of variables for 
each component 

1 2 3  1 2 3 

SD 0.866 -0.156 -0.404  0.295 -0.086 -0.204 
CLD 0.025 0.287 -0.94  0.012 0.096 -0.443 
RH -0.767 0.174 -0.215  -0.259 0.072 -0.094 
WS -0.242 0.349 0.709  -0.085 0.183 0.355 

PREC -0.348 0.755 -0.041  -0.119 0.339 0.008 
EVAP 0.555 -0.109 0.625  0.185 -0.028 0.295 
PRES -0.095 -0.921 0.224  -0.031 -0.406 0.076 
TMIN 0.498 0.69 0.218  0.166 0.317 0.127 
TMAX 0.935 0.266 -0.046  0.316 0.116 -0.017 

 
components. In Tables 4 and 5, loadings of 
meteorological variables for each component as bold 
and standardized weights of variables are shown for 
both rotations annually. The results of PCA for the 
annual term were presented in Table 4 for varimax 
rotation method and Table 5 for promax rotation 
method. Three principal components were retained with 
two methods. For ease of evaluation, only the loadings 
exceeding 0.5 in absolute values were indicated; the 
loadings of smaller magnitudes were regarded as 
insignificant and were removed. The principal 
components with high loadings of comparable sizes on 
the identical variables (i.e. with analogous construction) 
showed up in all analyses; hereby they could be 
assumed consistent and not sensitive to a specific 
selection of the rotation technique. 

The principal component scores were 
computed as mentioned in Eq. (8), such as 
multiplying the standardized value by the 
standardized weights of the variables. The scores 
acquired in PCA were used as the independent 
variables in MLR. In stepwise regression analysis, 
only statistically significant (95% CI) score variables 
were selected and nonsignificant values were 
removed from the mathematical prediction model for 
AQI. SPSS ver. 25 (IBM Corp.) was used for the 
statistical approach estimation.  

PCR models with varimax rotation were 
obtained for October–March, April–September, 
annual, winter, spring, summer, and autumn, 
respectively, in Eqs. (15–21). 

 
AQI = 53.979+9.788*(Score4)                 , R2 = 0.232  , SEE = 18.3               (15) 
 

AQI = 23.667+11.941*(Score3)-6.606*(Score2)  , R2 = 0.765  , SEE = 8.001               (16) 
 

AQI = 40.679+15.526*(Score3)    , R2 = 0.689  , SEE = 10.7               (17) 
 

AQI = 61.67+10.322*(Score2)                 , R2 = 0.214  , SEE = 20.3               (18) 
 

AQI = 35.491+12.029*(Score3)    , R2 = 0.605  , SEE = 10.26               (19) 
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AQI = 15.311+7.063*(Score1)+6.376*(Score2)  , R2 = 0.384  , SEE = 12.08               (20) 
 

AQI = 38.546+14.165*(Score2)    , R2 = 0.438  , SEE = 16.46               (21) 
 

Because of the PCR results of the varimax 
rotation, one component (Score4) was found to be 
statistically significant for October–March, two 
(Score3 and Score2) for April–September, one 
(Score3) for annual, one (Score2) for winter, one 
(Score3) for spring, two (Score1 and Score2) for 
summer, and one (Score2) for autumn. These 
equations indicated that the predicted AQI can be 
explained using the selected variables as ~23% in 
October-March, 77% in April-September, 69% 

annually, 21% in winter, 61% in spring, 38% in 
summer and 44% in autumn.  

For the same terms and using the promax 
rotation, the models were constructed as shown in the 
equations (22-28) below. According to these 
equations,  the forecasted AQI is expressed by the 
selected variables as ~20% in October-March, 72% in 
April-September, 71% annually, 30% in winter, 61% 
in spring, 38% in summer and 45% in autumn.

 
 AQI = 53.979+9.077*(Score4)                 , R2 = 0.199  , SEE = 18.69               (22) 
 

AQI = 23.667+11.359*(Score3)-5.895*(Score2)  , R2 = 0.719  , SEE = 8.74               (23) 
 

AQI = 40.679+16.087*(Score3)-6.511*(Score1) , R2 = 0.71  , SEE = 10.61               (24) 
 

AQI = 61.67-8.671*(Score1)+11.089*(Score2)              , R2 = 0.297  , SEE = 19.76               (25) 
 

AQI = 35.463+12.065*(Score3)    , R2 = 0.609  , SEE = 10.21               (26) 
 

AQI = 15.311+9.208*(Score1)+8.864*(Score2)  , R2 = 0.384  , SEE = 12.087               (27) 
 

AQI = 38.546+14.383*(Score2)    , R2 = 0.452  , SEE = 16.26               (28) 
 

As a result of the promax rotation models, the 
principal components were ensured to be statistically 
significant for all terms as one component (Score4) for 
October–March, two (Score3 and Score2) for April–
September, two (Score3 and Score1) for annual, two 
(Score1 and Score2) for winter, one (Score3) for spring, 
two (Score1 and Score2) for summer, and one (Score2) 
for autumn and mostly similar to those from the varimax 
method. As variable selection methods, varimax and 
promax rotation of principal components were utilized 
to select the convenient independent parameters for 
involvement in the eventual regression models. These 
approaches reduce the influence of multicollinearity on 
the prediction of the statistical coefficients in regression 
models. 
 

Table 6. Statistical indicators for prediction models 

Indicator MLR PCR        
with varimax 

PCR            
with promax 

RMSE 35.67 27.72 28.27 
IOA 0.55 0.82 0.79 

MBE 11.93 5.09 4.41 
 
Using the three methods, AQI values were 

predicted for 2011 using mathematical models obtained 
in MLR and PCR. In addition, statistical indicators were 
calculated for prediction accuracy (Table 6). The RMSE 
minimum value was estimated for the varimax rotation 
approach (in MLR 35.67, PCR with promax 28.27, and 
PCR with varimax 27.72). Similarly, the IOA values, 

which determine the best model as having a value close 
to 1, were 0.55 for MLR, 0.79 for PCR with promax, 
and 0.82 for PCR with varimax. Finally, MBE had the 
largest value for MLR with 11.93 and close to the values 
for PCR models at 5.09 and 4.41 but the least for 
promax. As seen from the results, the PCR models with 
varimax and promax performed better than the MLR 
models. The values from the PCR models were similar; 
however, the appropriate values for validation were 
preferable obtained using the varimax method.  
 

5. CONCLUSION 
 

The estimation of the AQI in Bolu, Turkey, was 
improved using meteorological variables. Prediction 
models were developed using two statistical approaches 
with integrated construction, such as PCA and MLR 
analyses. PCR and MLR were applied to the dataset to 
estimate the seasonal and annual AQI values. According 
to the predictions from the statistical processes, PCR 
and MLR provided similar results. Using PCA with 
regression models minimizes the collinearity of the 
datasets, which can lead to inadequate estimations, and 
also defines the appropriate explanatory variables for 
the estimation of AQI. Also, the PCR model is simple 
and clear because of the decrease in the number of 
variables. Furthermore, if we compare the PCR and 
MLR models, PCR has better characteristic values so 
that the determination coefficient values were generally 
higher and standard error of estimate values were lower 
than that of MLR. 
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With this method, AQI can be predicted using 
climate elements at a specific location. In addition, 
many factors, such as natural and anthropogenic 
emissions, industrial activities, fuel types and 
combustion, population density, traffic, power plants, 
topography, and land use, affect and degrade urban air 
quality. Atmospheric conditions, such as North Atlantic 
Oscillation (NAO), influence the Black Sea area. NAO 
affects climate elements, such as temperature and 
rainfall. This phenomenon can be studied in further 
research. 

High levels of PRES and RH and low levels of 
TEMP, WS, and PREC generate high levels of pollutant 
concentrations, such that low WS causes an increase in 
air pollution by not dispersing pollutants. High-PRES 
prevents the air from the surrounding regions from 
coming into the area. 

According to stabile atmospheric conditions with 
the PGT scheme, the dispersion of air pollutant 
concentrations is closely related to CLD, WS, vertical 
air-temperature gradient and solar radiation. SD is 
highly related to solar radiation and has also influences 
on pollutant concentrations. Hence, the existing 
bidirectional interactions between air pollutant 
concentrations and climate parameters may conclude in 
an increase or decrease in air quality for the atmospheric 
environment.    

The topography, such as mountainous structures 
and land use may influence the climate of Bolu province 
which is covered by forests and woodlands. Land use is 
a crucial element that contributes to the production of 
natural dust. The increased dust concentrations during 
hot and dry times of year may result from it being 
transported from deserts, such as Saharan and Arabian. 
The enhanced emissions can be originated from wind 
transportation during times of year when heating for 
buildings is not necessary and from anthropogenic 
activities during times when heating is necessary.  

The principal components with high loadings of 
comparable sizes on the identical variables (i.e. with 
analogous construction) showed up in all analyses; 
hence they could be assumed consistent and not 
sensitive to a specific selection of the rotation technique. 

The accuracy of the methods was analyzed by 
using statistical indicators for the 2011 data values. All 
results were similar, but PCR with varimax rotation had 
the best validation results; therefore, it is more 
convenient and can be used as an alternative method for 
predicting AQI values. 
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