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Abstract: Both the European continent and Romania are occupied by significate forested areas, often 
represented by rare species or even virgin forests. The natural distribution of the black pine (Pinus nigra 
ssp. Banatica) in the Banat region of Romania is still a pending spatial problem. Therefore, the main aim 
of this study is to assess the sustainability of morphometric parameters in modelling of Banat black pine in 
Domogled and Cernei Mountains, using Geographic Information Systems instruments. A set of 
morphometric parameters (altitude, depth, density, slope, and curvature), econometric climatic indicators 
(Martonne and FAI) and Vegetation indexes (NDVI and SAVI) have been derived from a 10m DEM, 
Sentinel 2 satellite images and WorldClim gridded data. For the modeled data, a contour of the area where 
the Banat black pine is found, which was validated by in situ mapping, was used. For the purpose of this 
study the dependent data set was split up into presence – absence of the Banat black pine and also the data 
was split into training and validation for both categories. For spatial analysis of the data ArcGIS 10.8.1 was 
used and for the statistical analysis R software was used. We obtained four models that used between two 
and six independent variables. All models were validated using AUC and R2 McFadden and obtained very 
good scores (between 0,886 and 0,904 and between 0,37 and 0,42 respectively). The most important 
predictors were found to be Martonne Aridity Index, slope, and SAVI. Based on our finding we can 
conclude that a geomorphometric modeling approach can be used, successfully, in explaining the spatial 
distribution of a tree species in a marginal environment.  
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1. INTRODUCTION 
 

Management and conservation of the forest 
biodiversity is an important global issue that concerns 
the ecologically use of forest (Lindenmayer et al., 
2008; Thom & Seidl, 2016). Some shortcomings 
identified, be research, in the last two decades were 
about spatial, time and management of the landscape 
(Lindenmayer et al., 2008). At continental level 
Europe has almost 100.000 protected areas, which is 
more than any other continent. Mountain forests 
represent one of the most important world ecosystems, 
and, also, according to European Environment Agency 
(EEA) forest is the most predominant ecosystem in 
Europe. In Europe these natural areas are part of a 
Europe wide network called Natura 2000 (Maes et al., 
2012), and almost 46% of primary forest are under 
strict protection (IUCN Category I) (Kulakowski et al., 
2018). EEA has also revealed that Europe was covered, 

in the past, by approximately 80% with forest. Bennett 
et al., (1991) considers the late Neogene-Quaternary 
climate changes as a key cause of the recent European 
tree flora (Pinaceae, Beech family), both warm and 
cold stages being responsible for the presence or 
extinction of some species in Northern Europe, and in 
Southern Europe (Svenning et al., 2008). The 
environmental conditions were the cause for the 
survival tree species in the southern part of the 
continent as well (Bennett, et al., 1991; Bottema et al., 
1995; Svenning et al., 2008). The Last Glacial Cycle is 
supposed to have made changes in the flora 
distribution of Central and Eastern Europe (Feurdean 
et al., 2014), as in the case of the black pine species, 
which is specific to the Mediterranean region (Di 
Pasquale et al., 2020). 

According to Sabatini et al. (2018) Romania is 
one of the countries from Eastern Europe where 
primary forest ecosystem is mostly located in the 
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mountain region. Romanian Carpathians occupies 
almost 21% of the country (Niculae et al., 2017). Due 
to the Romanian environmental laws, the diversity of 
the flora is a leading indicator in the assessment and 
the management of a forest ecosystem (Doniţă et al., 
2005). In the Banat region of Romania, the 
Mediterranean climatic influence becomes responsible 
for the presence here some endemic species: Linum 
uninerve, Primula auricula ssp. serratifolia, 
Athamanta turbith ssp. Hungarica and Pinus nigra 
ssp. Banatica (Dumitriu-Tătăranu & Florescu, 1965). 

Most studies consider black pine a wide-spread 
(Kaya et al., 1985; Kulakowski et al., 2018; Mikulová 
et al., 2019), having its origins in the geological past of 
the Mediterranean areas of Europe - Mediterranean 
Islands, Balkan Peninsula, Iberian Peninsula, South of 
France, South of Italy (Levanič et al., 2012). 
Separation of black pine at European level occured due 
to natural environmental conditions, such as physical 
and chemical particularities of the substrate, expressed 
by ecological requirements (Isajev et al., 2004). In 
Romania, the Banat black pine is found in three 
specific areas in the Southwest of the country: 
Domogled – Cerna Valley National Park, Almăjului 
Mountains, and Vâlcanului Mountains (Pătroescu et 
al., 2007), in Domogled Massif being the largest 
population (Levanič et al., 2012). The Banat black pine 
represents an emblematic species for the Domogled – 
Cerna Valley National Park, and due to its historical 
evolution and ecological particularities, the Banat 
black pine represents one of the most important key 
species for ecological modeling.  

Pătroescu et al., (2007) have revealed in their 
study that the main natural conditions of the black pine 
habitat are steep limestone slopes, fragmented 
landforms, aridity, and Levanic et al., (2012) have 
shown in their study the resistivity of black pine to 
aridity and drought. Therefore, we considered these 
indicators as main factors for this species habitat. 
These are some of the most important ecological 
factors for understanding the forest ecosystem as 
whole system (Schupp, 1995; Dullinger et al., 2005). 
Many studies have shown the relationship between the 
forest ecosystem and the European black pine (Nikolic 
& Tucik, 1983; Tíscar & Linares, 2011; Enescu et al., 
2016).  

The morphometric parameters are important in 
the occurrence of climatic events such as wildfire in 
the coniferous forest (Sáenz-Ceja & Pérez-Salicrup, 
2019), considering the steep slopes and limestone 
cliffs. Most studies have revealed the importance of the 
black pine growth dependency on climatic conditions 
(Piermattei et al., 2013; Proutsos & Tigkas, 2020). 
Thus, we used two ecometric climatic indicator, such 
as Forest Aridity Indicator and Martonne Aridity 

Index. Martonne Aridity Index is used as a climatic 
indicator for areas of different soil types, and to show 
the difference between zonal forest formations, where 
values increase while the altitude also increase 
(Chiriță, 1977). FAI expresses a higher values in a 
warmer and drier year with effects in the trees growth 
decline (Führer et al., 2011; Móricz et al., 2018). In 
order to analyze the density and the health level of 
forest we used the Normalized Difference Vegetation 
Index (NDVI), considered by Zhou & Troy (2008) the 
best in differencing of non-vegetation and vegetation. 
The Soil Adjusted Vegetation Index (SAVI) is used in 
case of a lowered vegetation index signal, especially in 
areas characterized by a single soil (Huete, 1988), in 
our case study being brown soils (rendzinas) (Isajev et 
al., 2004), and suitable for the temperate climatic 
conditions from Romania (Mihai et al., 2019). 
Considering that the southwestern part of Romania is 
more and more affected by drought, we hypothesized 
that the Banat black pine prefers arid areas, even that 
this causes forest disturbances.  

Therefore, we propose as methodology the use 
of generalized linear model (GLM), which is an 
extension of logistic regression that works best with 
binary dataset (Zare Chahouki & Zare Chahouki, 
2010; Salas-Eljatib et al., 2017), as in this case the 
presence and absence of black pine. Understanding 
species ecology is a process of linking accurate spatial 
data observations with an interrelation of these data 
(Azaele et al., 2015). Recent species natural 
distribution assessment methods pay close attention in 
establishing the environmental components ranking 
through statistical approach, such as multiple 
regression, the group of generalized logistic models 
(GLMs) (Guisan & Zimmermann, 2000; Araújo et al., 
2011). After the factors significance hierarchy is 
settled, they are used in spatial statistical algorithms in 
order to define environmental conditions as a whole 
system (Lebourgeois et al., 2013). The result of the 
spatial statistical complex correlations is the most 
accurate indicator of environmental influences on 
species ecology (Prasad et al., 2006). Applying logistic 
regression models in ecology implies a probability of 
the binary response variable directly modelled, if there 
is considered the random nature of the analyzed event 
(Salas-Eljatib et al., 2017). Hence, the modeling aims 
to create a hierarchy of the natural condition’s 
favorability for the Banat black pine site, and to model 
the distribution of the black pine in our test area. 

 
2. STUDY AREA 

 
The study area is part of the world-wide 

network Natura 2000 Pinus nigra ssp. Banatica site, 
an integrated part of the Domogled – Cerna Valley, 
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which covers an area of 62.221 ha (Figure 1). By 
analytical methods it was established that the forested 
area of this national park is about 3046.40 ha, of 
which the Banat black pine forests represent 
approximately 1953,1 ha, and the non-forested is of 
forested of almost 217.41 ha (Levanič et al., 2012) 
1953.1 ha (Pătroescu et al., 2007). The Cerna and 
Mehedinți Mountains are in the southwestern part of 
the Southern Carpathians. The two mountain groups 
are separated by the Cerna River from north to south. 
Being specific to a Mediterranean climate influence 
and a fragmented relief (Levanič et al., 2012), the 
Mehedinți and Cerna Mountains have a favorable 
environment for this species. The presence of black 
pine endemic species was the main reason to create 
this protected site in 2005 (Pătroescu et al., 2007).  

The entire landscape is dominated by an 
expressive structural, tectonic, and lithological 
landform, connected with Mesozoic limestones and a 
complex Cerna fault system (Török–Oance, 2003-
2004). Impressive cliffs, structural steps, gorges and 
karst landforms are defining elements of the 
geomorphological lansdcape (Fig. 2).  

The study site is a large black pine discontinuous 
forest within a calcareous and karst area. Banat black 
pine habitat prefers xerophilous vegetation ecosystems, 
which are adapted to drought, and hard-to-reach 

limestone cliffs (Isajev et al., 2004). Thus, skeletal soils 
and the steep slopes are common elements in all areas 
where it current vegetates (Pătroescu et al., 2007). The 
distribution of this species is still disputed, the Banat 
region being exclusively part of Romania where this tree 
grows naturally. Recent research has revealed that lately 
climate changes has intensified the forest disturbance 
regimes, as well as the wildfires are more frequent, and 
the areas occupied by black pine are most affected by 
drought (Levanič et al., 2012; Kulakowski et al., 2018; 
Thom & Seidl, 2016). 

 
3. MATERIALS AND METHODS 

 
3.1. Data collection 

 
In this study we used the following data: 
- he Banat black pine site – shapefile data 

provided by the Romanian Ministry of Environment; 
- A 10 meters resolution Digital Elevation 

Model derived from a 1:25000 military topographic 
map; 

Ecometric climatic indicators derived from 1 
km² resolution WorldClim gridded time-series of 
climate variables (temporal range 1970-2000):  

- FAI (Forest Aridity Index) and De Martonne 
Aridity Index; 

 

 
Figure 1. A - The study area location; B – DEM of the south part of Domogled-Cerna Valley National Park 
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Figure 2. Structural and lithological landforms in 

Feregari Gorges. 
 

- Vegetation indices derived from a 10 m 
resolution Sentinel 2 satellite image recorded on April 
22, 2018, such as Normalized Difference Vegetation 
Index (NDVI), Soil Adjusted Vegetation Index 
(SAVI).  

 
3.2. Binary data 

 
Since DEM spatial resolution is close related to 

the ecological model accuracy, we decided that a 10 
meters resolution DEM from topographic map is our 
study optimal (Lebourgeois et al. 2013). Thus, the 
first step was to convert the distribution area of the 
Banat black pine site (as a vector polygon) into raster 
data. Then each pixel was converted into a vector-
point feature. The result consisted of 197238 points 
representing the black pine area. The largest point 
cluster appears in the Domogled Mountain 
Reservation, having the highest point in Domogledul 
Mare (1105 m a.s.l.), containing 81,71 % of the total 
(Fig.3). There were also identified smaller areas due 
to less favorable conditions for the development of 
these forests (Pătroescu et al., 2007). In the Cerna 
Mountains and in the northern part of Mehedinți 
Mountains the presence of black pine is limited due 
to landforms morphometry, with less fragmented 
relief, which is different than the one observed in 
Domogled Massif (Levanič et al., 2012). The location 
points of a species in a certain area provides valuable 
information for understanding the ecology of that 
species (Elmendorf, et al., 2012; Lebourgeois et al. 
2013; Dalponte et al., 2014).  

Nevertheless, recent studies have revealed that 
knowing the factors which impact the presence of a of 
a species would be pictured also by constrainers, even 
of negative factors or of bad ranges (Lu et al., 2020). 
To complete the database, we generated a new spatial 
database of 89756 black pine absence points in the 
immediate neighborhood/proximity of the presence 
area. Thus, the final database contains 64,4% of 
presence and 35,6% of absence points observations. 
 

3.3. Explanatory Variables 
 

The database of all points (P – presence, A- 
absence) was completed by five morphometric 
parameters attributes extracted from DEM (altitude, 
slope, curvature, density, depth), using tools from 
ArcToolbox. These are some of the most important 
ecological factors for understanding the forest 
ecosystem as whole system (Schupp, 1995; Dullinger 
et al., 2005). 

Therefore, altitude was measure by extracting 
values for each point of the database using the tool 
Extract values to point/Spatial Analyst. Slope, in units 
of degrees, was extracted from DEM using the tool 
Slope/Spatial Analyst. The Curvature/Spatial Analyst 
tool was, used as well, to derivate each cell considering 
the neighboring cells, and to estimate where the local 
landscape is convex (positive values) or concave 
(negative values). Density was measure by reporting 
the length of the hydrographical network per unit area 
(generally square kilometers), using Block 
statistics/Spatial Analyst, and then the tool 
Intersect/Spatial Analyst to intersect each square to the 
hydrology. Depth of relief, also known as energy of 
relief, in units of meters, involved finding and 
subtracting the minimum altitude from the maximum 
on a certain surface using Block statistics/Spatial 
Analyst. 

Ecometric climatic indicators are important 
biogeographical factors for the Banat black pine 
habitat (Pătroescu et al., 2007). Thus, we used two 
climatic indices: De Martonne Aridity Index and 
Forestry Aridity Index. De Martonne aridity index, or 
the ratio between the mean annual values of 
precipitation (P) and temperature (T) plus 10°C. 
Forestry Aridity Index (FAI) (or 𝑇𝑇𝑉𝑉𝑉𝑉𝑉𝑉−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 
/(𝑃𝑃𝑉𝑉−𝑉𝑉𝑉𝑉) +(𝑃𝑃𝑉𝑉𝑉𝑉𝑉𝑉−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)). Therefore, for each point of 
presence was extracted multiannual average, 
minimum, maximum temperatures and the same for 
precipitations from the 1 km² gridded WorldClim 
database (Fick & Hijmans, 2017). A recent study 
conducted by Sangüesa-Barreda et al., (2019) has 
revealed that drought impacts the growth of black pine 
in Mediterranean basin by increasing the 
desynchronization. At first, we thought the data 
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Figure 3. Distribution area of the Banat black pine. 

 
resolution difference would give uncertainty results 
(Heuvelink & Stein, 1989; Devendran & Lakshmanan, 
2014), but there are many ecological studies that used 
this dataset (Stone & Laffan, 2013; Winder, 2014; 
Wango et al., 2018) and have proved in their study that 
most of the data from WorldClim dataset, with the 
exception of precipitation data, give similar data as the 
ones taken from meteorological stations.  

Finally, remote sensing data contain important 
spatial information (Blaschke et al., 2000; Alsharrah, 
et. al., 2016; Gibson et al., 2018). And the Normalized 
Difference Vegetation Index (NDVI) and Soil 
Adjusted Vegetation Index were extracted from the 
Sentinel 2 satellite image. 

 
3.4. Methodology 
 
The use of statistical analysis consisted in 

finding best models of the logistic regression, to make 
prediction of presence and absence (Guisan & 
Zimmermann, 2000) of the Banat black pine, on basis 
of the natural conditions to be defining for the habitat 
of this species (Isajev et al., 2004).  

The data processing (e.g. preparation of the 
binary dependent variable and independent variables) 
was performed using ArcMap 10.8.1 software. The 
statistical analysis was performed using R free 

software environment (R core team. 2018). The 
whole methodology implies both processing the data, 
and the statistical analysis as shown in the Figure 4.  

The first step was to apply a very used 
multicollinearity occurrence diagnosis among the 
explanatory variables, the Pearson’s correlation 
(Senaviratna & Cooray, 2019; Milanović et al., 2021). 
The method shows a multicollinearity concern in case 
of values greater than 0.7 (Chao et al., 2008). By 
applying the multicollinearity method, we could 
choose the independent variables suitable to model a 
more precise distribution of Banat black pine. At this 
point the database consists of eight explanatory 
variables - each one with a specific range for both the 
presence and absence of the Banat black pine. These 
ranges sometimes overlap, which strengthens our 
belief that by tacking all variables together, as a 
system, it would be easier to understand the ecology 
of a species, also highlighted in other studies 
(Senaviratna & Cooray, 2019; Milanović et al., 2021). 
Further, the whole database was randomly divided 
into two sets, a percentage of 70% for training, and 
the remains percentage of 30% to test our GLM 
models (Raschka, 2018). 

The next step was to apply the generalized 
linear model (GLM) on the training dataset, by adding 
one explanatory variable after each computation. 
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Figure 4. Workflow of data processing using ArcMap 10.8.1, and the statistical analysis using R free software environment. 

 
Hence, there were four models based on which 

we could set up the hierarchy of all independent 
variables for the distribution of the Banat black pine. 

The final step was to verify our four models by 
ranking them according to their area under the curve 
(ROC) values and R squared.  
 

3.5. Models’ validation 
 
The models’ validations are the Area under the 

curve (AUC), and R squared (McFadden’s). AUC is 
considered an important evaluation metrics for 
models’ validation, due to its practical way to outline 
the overall accuracy of the test (Hanley and McNeil, 
1982). An AUC is the measure or degree of 
separability, while the Receiver Operating 
Characteristics curve (ROC) represents a probability 
curve. A greater AUC value means the model is 
predicting better the 0 as absence classes, and the 1 as 
presence classes (Giancristofaro & Salmaso, 2007).  

Regarding the second model’s validation, in 
the last decade, some studies have shown that 
McFadden’s measure is best to calculate the R 
squared (Hu & Palta, 2006; Smith & Mckenna, 2013), 
which is defined as:  

(1) R2
McF = 1 – ln (LM) / ln(L0); 

where: ln (LM) - the maximized likelihood for the 
model without any predictor; and ln (LO) - the 
maximized likelihood for the model with all 
predictors. 
 

4. RESULTS 
 

4.1. The GLM results 
 

The Banat black pine distribution in our area of 
interest is explained by several independent variables, 
which have shown significant values. Correlated 
variables occur due to same source of data, like in 
case of the Martonne and FAI, SAVI and NDVI, as 
shown in table 1. After adding each new explanatory 
variable in the logistic regression, the conditions that 

influence the natural distribution of the Banat black 
pine are more visible.  

Therefore, the six variables, shown in the table 
2, fit best in the GLMs, with an AIC value decreasing 
after adding each variable. However, the six variables, 
shown in the table 2, fit best in the GLMs, with an AIC 
value decreasing after adding each variable, and a 
Pearson values smaller than 0.7. The Martonne Index 
was considered the main independent variable. Slope 
and curvature are important in the study of the black 
pine, also revealed by others (Levanič et al., 2012), 
steep and sunshiny slopes represent main items in the 
distribution of this species, because of its growth on 
both extremely humid and dry habitat, and on 
limestone cliffs (Isajev et al., 2004). Density and depth 
landforms fragmentation also show significant values 
regarding the AIC, as the horizontal fragmentation 
influences the drainage system alongside the slope and 
expositions (Pătroescu et al., 2007). Altitude and 
vegetation indices, NDVI and SAVI are not so 
important variables, but when they are coming together 
with the other explanatory variables, the model is 
statistically improved by a lower AIC value (Table 2). 

 
4.2. The models’ validation results 

 
The AUC performance for each one GLM 

shows significant values greater than 88% (Table 3), 
which supports the validity of each model. The 
differences between the models we applied are 
insignificant, but they have helped to model the 
distribution of this species more accurately. The GLM 
models results gave an accurate response of the spatial 
distribution of the Banat black pine in the area of 
interest. Thus, applying this additional validation we 
were able to show a image of favorability for presence 
and absence of this species in the Domogled – Cerna 
Valley National Park (Figure 5). The models that have 
predicted values more than 0.5 were considered as 
predicted presence, while the smaller values were 
considered predicted absence (Ireland, Drohan, 2015; 
Baeten et al., 2019). The favorability of the presence 
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Table 1. Correlations among explanatory variables. 
 Altitude Depth Density Slope Curvature NDVI SAVI Martonne FAI 

Altitude 1 
 

       

Depth -0.513 1        

Density -0.574 0.409 1       

Slope -0.204 0.373 0.149 1      

Curvature 0.369 -0.249 -0.249 -0.119 1     

NDVI 0.358 -0.385 -0.269 -0.431 0.152 1    

SAVI 0.359 -0.385 -0.269 -0.434 0.156 0.976 1   

Martonne 0.820 -0.504 -0.504 -0.229 0.302 0.373 0.374 1  

FAI -0.718 0.386 0.502 0.167 -0.248 -0.283 -0.284 -0.840 1 

 
Table 2. The GLM models applied, with the five explanatory variables and the AIC values for each one. 

The GLMs Explanatory variables AIC 
M1 Martonne, Slope 116110 
M2 Martonne, Slope, Density  109758 
M3 Martonne, Slope, Density, Depth 107612 
M4 Martonne, Slope, Density, Depth, Altitude, SAVI 106431 

 
Table 3. Model validation, with the AUC values for both train and test sets, and the McFaddens R squared’s 

values. 
GLMs AUC train set AUC test set R2McFadden 

M1 0.888 0.886 0.37 

M2 0.896 0.895 0.41 
M3 0.902 0.901 0.42 
M4 0.905 0.904 0.42 

 

 
Figure 5. Plots of AUC for each GLM model (AUC1 - M1; AUC2 - M2; AUC3 - M3, AUC4 - M4). 
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Figure 6. Distribution of data validation on the subset of testing, for both presence and absence of the Banat black 

pine for first GLM model (M1). 
 

 
Figure 7. Distribution of data validation on the subset of testing, for both presence and absence of the Banat 

black pine for second GLM model (M2). 
 

has a percentage over 90%, and the percentage of not 
favorability is 5% for each model. The absence is 
expressed as a percentage of almost 40% of 
favorability, and a percentage of approx. 60% of not 
favorability, as shown in the figures 6 – 7 – 8 - 9.  

In this study we have established the hierarchy 
of the natural condition’s favorability by using the 
generalized linear model to show the natural 

distribution of the Banat black pine. Thus, this study 
proves the hypothesis that the morphometric 
parameters, as well the drought play important roles 
in the Banat black pine habitat and natural 
distribution, as in case of the Mediterranean black 
pine subspecies. Further research must include field 
work in order to acquire more data about the Banat 
black pine habitat. 
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Figure 8. Distribution of data validation on the subset of testing, for both presence and absence of the Banat 

black pine for third GLM model (M3). 
 

 
Figure 9. Distribution of data validation on the subset of testing, for both presence and absence of the Banat 

black pine for forth GLM model (M4). 
 

5. DISCUSSION AND CONCLUSIONS 
 

The study shows the correlation between the 
black pine habitat characteristics and its natural 
distribution, and it represents an important first 
step in the statistical analysis of the Domogled 
Massif sustainability for the Banat black pine tree. 
The accuracy of validation model confirms that 
the GLM is the best statistical distribution model 

of the Banat black pine, for now. The high 
accuracy assessment of our regression models led 
us to graphical response of the distribution of the 
Banat black pine, with higher values of AUC (i.e., 
0.9) in all four models (Shtatland et al., 2014). 

As stated in a study about the Anatolia black 
pine distribution in Turkey, the morphometric 
parameters are important factors which influence the 
distribution of black pine (Atalay & Efe, 2012). 
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Therefore, the results obtained in this study support the 
claim of similarity between the two species (Boşcaiu 
& Boşcaiu, 1999). They determined a specific 
microclimate which has an important role in the 
presence of the Banat black pine on the limestone cliffs 
and valley sides, in all mountain ranges. Comparing to 
the other black pine sites from the European continent 
which are climate related (Isajev et al., 2004), the 
Banat black pine, as well the Arnold black pine 
habitats are strongly influenced by landforms 
morphometry. In the case of both species, the drought 
became lately a serious problem, which affect their 
growth and distribution (Móricz et al., 2018). 

In the last decades, the habitat of the Banat 
black pine is confronting drought, and the distribution 
of this species is still an unsolved scientific problem. 
Only few studies on it have revealed the forests 
general condition, and habitat associations based on 
field research (Pătroescu et al., 2007; Levanič et al., 
2012). According to this information the statistical 
spatial analysis used in this study highlights the 
distribution of the Banat black pine, considering the 
morphometric parameters, ecometric climatic indices 
and vegetation indices. 
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