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Abstract: UAV technologies provide a time- and cost-efficient framework for a variety of environmental 
monitoring domains. It also increases data resolution and provides new insights into observed objects and 
phenomena, especially within the difficult-to-access and complex for monitoring aquatic habitats. The 
objective of this study was to develop UAV-based acquisition and GIS-based image processing guidelines 
for aquatic macrophyte detection and monitoring in large temperate rivers. According to the European 
standard CEN EN -14184:2014, the assessment of aquatic macrophytes should be performed using the 
transect approach. Large rivers, such as the Danube, represent an exception and should be evaluated using 
1km transects. Therefore, seven transects of the Middle Danube in Serbia were simultaneously surveyed 
using traditional field methods and novel UAV technology. UAV images were acquired using RGB and 
multispectral cameras carried by a fixed-wing drone. The images were processed and orthomosaics were 
classified using Object Based Image Analysis (OBIA), to create digital GIS maps of the river transects. 
During the traditional monitoring approach, the relative abundance of 22 macrophyte species was recorded 
along the transects. Using the UAV technology and OBIA approach eight macrophyte classes were 
distinguished based on dominant macrophyte taxa or plant life form traits. Aquatic macrophytes were 
'almost perfectly' distinguished from the orthomosaics, achieving a high classification accuracy of 96 % / 
88 % / 0.84 for RGB and 94 % / 97 % / 0.95 Producers /Users accuracy/Kappa index for the multispectral 
approach. Individual macrophyte classes accuracy varied between 0.5 and 1 Kappa and were generally 
higher for the multispectral imagery approach. Although the resolution of the taxonomic data is lower, 
UAV monitoring provided the necessary spatial context of macrophytes distribution and absolute area 
occupied by macrophytes. It also provided information on the diversity and distribution of habitats along 
the river. Therefore, the UAV-assisted monitoring approach described in this study can be effectively 
integrated into macrophyte monitoring during large river expeditions such as the JDS. 
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1. INTRODUCTION 
 

Monitoring of the diversity, structure, and 
ecological characteristics of biota in rivers and lakes 
represents the basis for fundamental and applied 

research of freshwater ecosystems. When it comes to 
the assessment of aquatic vegetation within European 
rivers, the transect approach represents the ‘gold 
standard’, although there are differences concerning 
transect length, scoring system, monitoring 
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frequency, and data evaluation and interpretation 
methods (Birk et al., 2010).  

Monitoring schemes for large rivers usually do 
not follow the standards for any given area or river type 
but represent exceptional strategies developed to make 
the monitoring process feasible and yet as reliable as 
possible. Monitoring strategies for aquatic vegetation 
are usually evaluating minimal acceptable area and are 
using robust assessment methods including 
evaluations from boats and ships or using aerial 
photographs, which produce low-resolution data (Birk 
et al., 2012), and are spatially and temporally limited, 
and time and money consuming especially considering 
monitoring of large areas (Sojka et al., 2019). 
Ecological monitoring of the Danube River relies on 
the Joint Danube Survey (JDS) expeditions, realized 
once every six years. The strategy for aquatic 
vegetation assessment follows the European Standard 
EN 14184: 2003 i.e., EN 14184: 2014, although the 
standard itself make an exception for the Danube 
River. The result of the macrophytes monitoring 
campaign is the ecological status of the selected river 
sections, which usually comprise only a small fraction 
of the total river course.  

Development of the Unmanned Aerial Vehicles 
(UAV) technology has enabled highly flexible and 
efficient data collection with high spatial, temporal, 
and spectral resolution, which offer a variety of 
possibilities for environmental monitoring (Pande-
Chhetri et al., 2017; Manfreda et al., 2018). The 
development of the GIS provided new tools for 
environmental monitoring and mapping (Jaskuła & 
Sojka, 2019) among which the image analysing tools 
gave encouraging results for aquatic vegetation 
assessment.  

Various researchers have reported successful 
evaluation of aquatic and riparian vegetation in 
general (Ventura et al., 2018; Brinkhoff et al., 2018; 
Taddia et al., 2020), detection of specific ecological 
groups (Visser et al., 2018; Visser et al., 2013; 
Husson, 2016; Husson et al., 2017; Villoslada et al., 
2020), and individual native or invasive species 
(Flynn & Chapra, 2014; Pande-Chhetri et al., 2017; 
Bolch et al., 2021; Chabot et al., 2016; Chabot et al., 
2018, Brooks et al., 2019). Copter-type (multirotor) 
drones are prevalent, mostly because of their 
availability, manoeuvrability, and price. 
Nevertheless, in the domain of large-scale research 
(more than 1km2) fixed-wing drones appear to be a 
more suitable option (Tmušić et al., 2020). During the 
first several years most of the studies used RGB 
cameras (Flynn & Chapra, 2014; Husson et al., 2014; 
Husson, 2016; Husson et al., 2017; Pande-Chhetri et 
al., 2017; Marcaccio et al., 2015; Visser et al., 2015; 
Visser et al., 2018; Ventura et al., 2018; Michez et al., 

2016; Stocks et al., 2019), but with the development 
of the specialized UAV multispectral (MSP) cameras 
in the recent years there is significant amount of 
studies testing the possibilities they offer (Chabot et 
al., 2016; Chabot et al., 2018; De Luca et al., 2019; 
Brinkhoff et al., 2018; Taddia et al., 2020; Brooks et 
al., 2019; Song & Park, 2020; Villoslada et al., 2020; 
Agioutanti, 2022). There are also two dominant 
image analysing approaches - pixel-based and object-
based (OBIA) image classification. Pixel-based 
approach classifies images pixel by pixel, based on 
their spectral characteristics (Pande-Chhetri et al., 
2017). However, with the improvement of UAV 
images resolution, the OBIA approach emerged as a 
more suitable solution (Pande-Chhetri et al., 2017; 
Sibaruddin et al., 2018) and is used in the plethora of 
studies (Husson, 2016; Husson et al., 2017; Chabot et 
al., 2016; Chabot et al., 2018; Sibaruddin et al., 2018; 
Visser et al., 2013; Visser et al., 2018; Ventura et al., 
2018; Díaz-Varela et al., 2018; Brooks et al., 2019). 
OBIA approach includes the image segmentation, and 
subsequent classification of the created segments. It 
also tends to include additional contextual 
information, shape, texture, and spectral 
characteristics, of the image objects into classification 
process (Sibaruddin et al., 2018). Machine learning 
algorithms have been recognized as the most 
successful image classification approach, among 
which the Random Forest classifier stands out 
(Husson, 2016; Husson et al., 2017; Villoslada et al., 
2020; van Iersel et al., 2018). Considering that there 
are currently no standards instructing researchers and 
stakeholders on how to obtain, analyse, and interpret 
data, all existing studies could be considered 
pioneering research within a new multidisciplinary 
field uniformly and comparably. This field could 
improve and optimize the methodology for assessing 
aquatic vegetation in the future.  

This study represents the first attempt to 
integrate available UAV assessment tools into the 
existing traditional monitoring scheme and enable 
collection of higher resolution aquatic vegetation data 
within the Middle Danube area in Serbia.  

The aim of this study was to develop UAV-
based acquisition and GIS-based image processing 
guidelines for detection and monitoring of aquatic 
vegetation in large temperate rivers. In order to achieve 
the main goals of this study, the following tasks were 
set: 1) to collect aquatic vegetation data along the 
Middle Danube sections using traditional survey 
methods; 2) to create, perform, and optimize a UAV 
protocol for collecting vegetation data at the same river 
sections; 3) to carry out the object based image 
classification of UAV aquatic vegetation data; 4) to 
compare results of the standard vegetation monitoring 
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and UAV based approach with recommendations for 
the following JDS and other large river expeditions. 

Integration of remote sensing within traditional 
monitoring could provide new insights about aquatic 
habitats (Jaskuła & Sojka, 2019). By standardizing, 
UAV tools would enable the processing of larger 
areas in shorter time frames and ease method 
calibration, intercalibration, and harmonization 
process. In this way, the temporal dynamics of 
aquatic vegetation, hydromophological 
characteristics, but also increasing anthropogenic 
pressures and impacts along the watercourse could be 
efficiently monitored. 
 

2. STUDY AREA  
 

Fieldwork was conducted at four locations 
along the lower section of the Danube River in Serbia 
(Figure 1). The goal was to include the sections of the 
river with different floristic and hydro-morphological 
characteristics, which would allow testing of the 
approach on diverse habitats and vegetation types. 

 

 
Figure 1. Selected sections of the Danube River in the 
Middle Danube area in Serbia 

 
1. Pančevo – Two typical subsequent 1 km 

river stretches. Silt substrate and sand riverbank with 
the slight slope, up to 1 m height. Mixed poplar-
willow riparian forest with poplar tree plantation in 
the background. Pančevo_A - Upstream quarter of the 
section is used as a weekend lodging area with a 
sporadically resectioned, embanked, and steep bank. 
Pančevo_B - Dominantly pristine. 

2. Dubovac – Two subsequent embanked 1 km 
river stretches. Silt and sand-gravel mixture substrate 
with steep, up to 3 m high concrete blocks 
embankment, with a cultivated poached pasture in the 
background. Dubovac_A – Extremely shallow former 
flooded forest area, with remaining sporadic tree 
roots and boulders. Part of the vegetated sandbar. 
Dubovac_B - Deeper embanked river section, only 
partly encompasses the sand sidebar. 

3. Slatina – two individual non-subsequent 
sections. Slatina_Bara - The Danube River oxbow 

connected with the river main course. Part of 
Dubovački rit flooding area. Silt substrate with a 
gently sloped earth/silt bank, with tall emergent 
vegetation. Slatina_Dunav - Sand-gravel shallow 
river sidebar at the bottom of a high loess section. 
Slightly sloped low riverbank with an almost vertical 
loess section above. Sporadic willow trees and tall 
herbs.  

4. Labudovo okno – oxbow of the Danube 
River directly connected to the river's main course. 
Silt substrate and an almost flat sand bank, with 
sporadic willow trees and tall herbs. 
 

3. MATERIALS AND METHODS 
 
3.1. Aquatic vegetation survey 

 
Aquatic vegetation of the selected sections was 

assessed twofold, using transect and plot survey 
approaches. Transect vegetation survey was performed 
according to the Joint Danube Survey (JDS) 
methodology, which was developed in accordance 
with the Guidance for the surveying of aquatic 
macrophytes in running waters (CEN – EN 14184, 
2014). Aquatic vegetation was assessed through 1 km 
transects evaluated from a small boat slowly floating 
along the banks, with at least two stops (200 and 700 
m) for detailed plant inventory and sampling (JDS4, 
2021). The presence, abundance, and life form of each 
macrophyte species present in the water were recorded. 
Macrophyte abundance was assessed using the Kohler 
five-point scale for aquatic vegetation of running 
waters (Kohler, 1978; Kohler & Janauer, 1995). Life 
forms of the plants were determined according to the 
MIDCC (Multifunctional Integrated Study, Danube 
Corridor and Catchment). Each time when a floristic 
and/or structural change in the vegetation was 
observed along the transect, additional stops were 
made. At each stop, macrophytes were assessed using 
vegetation plot survey approach. Present species were 
quantified using the five-point Kohler scale (Kohler, 
1978). Depending on the size of the stand, the plot's 
size ranged from 0.5 to 3 m in radius. In the case of 
large uniform stands several subsequent plots were 
recorded to improve interpretation of the 
photogrammetry products. Evaluated transects and 
plots were georeferenced using a GPS device and the 
time spent was noted.  
 

3.2. Flight 
 

River sections were recorded with the fixed-
wing Sensefly eBee X drone using RGB S.O.D.A. and 
multispectral Parrot Sequoia cameras. Sensefly 
S.O.D.A camera with a 1” 20 Mpx RGB sensor is the 
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first camera specifically designed for professional 
drone photogrammetry. Parrot Sequoia multispectral 
camera captures imagery across four narrow spectral 
bands with 1.2 Mpx monochrome sensors centered in 
the Green – 550 nm, Red – 660 nm and Near Infrared 
– 790 nm regions with 40 nm bandwidth and Red 
Edge – 735 nm wavelength with 10 nm bandwidth, it 
also captures RGB photos with 16 Mpx sensor.  

Aerial images were acquired through two 
subsequent flights at each location. The flight 
altitudes were 185-215 m above the ground, with 80% 
longitudinal and 60% lateral image overlap. 
Orthomosaic resolution of 0.02 m/pix was targeted as 
it enables the distinction of singular individuals of 
most aquatic macrophytes from the photos. All flights 
were performed within one day (04.09.2020., 9-19 h) 
at optimal meteorological conditions. 

 
3.3. UAV workflow 
 
3.3.1. S.O.D.A – RGB imagery 
UAV-based geotagged images were block 

adjusted and stitched into individual georeferenced 
orthomosaics using default settings of the Adjust tool 
within the ArcGIS Pro 2.6.0 software.  

Orthomosaic segmentation was performed 
using LargeScaleMeanShift algorithm of Orfeo 
Toolbox (OTB) 7.2.0 within the QGIS 3.16.3-
Hannover software. Segmentation process groups the 
neighboring pixels into discrete entities based on their 
spectral characteristics and spatial distribution, 
forming a new polygon layer. Different range and 
spatial radius values were tested to determine optimal 
segmentation parameters (De Luca et al., 2019). 
Range factor was changed by 1 degree, while spatial 
radius was changed by 10 degrees. Products were 
visually evaluated after each iteration (Pande-Chhetri 
et al., 2017; De Luca et al., 2019). Minimum segment 
size of 50 pixels was set to prevent creation of small 
objects which could cause scattered classification 
(Ventura et al., 2018). This enabled isolation of 
smallest distinguishable image objects given the 
image resolution as suggested in Sibaruddin et al., 
(2018), which were individual Trapa sp. plants or 
Nymphea/Nuphar leaves. Similar approach was used 
by De Luca et al., (2019) and De Marinis et al., 
(2021). If the segment size was lower than the set 
threshold it was merged with the most similar 
surrounding segment. 

Before further analysis Area of Interest (AOI) 
polygons were created for each transect. Bank, 
riparian areas, terrestrial vegetation, and artificial 
constructions beyond the scope of the research were 
clipped out (Chabot et al., 2018; Jiménez-Jiménez et 
al., 2020; Villoslada et al., 2020). In this way, the 

UAV approach was coordinated with the JDS 
macrophyte assessment methodology, focusing only 
on aquatic vegetation within the river channel.  

After segmentation, a set of RGB and texture 
indices were calculated for each orthomosaic (Tables 
1 and 2). RGB indices were calculated using Raster 
calculator tool (Barbosa et al., 2019), while the 
Texture indices were compiled using 
FeatureExtraction tools of OTB, and r.texture tool of 
the GrassGIS providers in QGIS. Texture indices 
were compiled based on the first axis of PCA 
(Principal components analysis) analysis of RGB the 
orthomosaics (Kupidura, 2019). The mean value of 
all indexes was calculated for each segment using 
Zonal statistics tool in QGIS. Calculated values were 
used as objects classification attributes in order to 
increase the classification accuracy (Pande-Chhetri et 
al., 2017). Training and validation data sets were 
created by expert based visual interpretation, which 
was feasible due to extremely high resolution of 
orthomosaics (Ventura et al., 2018; Chabot et al., 
2018). Training datasets were created by manual 
selection of 50 evenly distributed representative 
reference objects for each feature class. Macrophyte 
data collected through traditional field methods were 
used as ground truth and reference data during this 
process, but were not solely sufficient and fully 
adequate for successful and automatic extraction of 
the training dataset (Chabot et al., 2018). 

Validation datasets were automatically 
extracted from the segmentation layer based on the 
400 points created with Random points tool in QGIS 
(Pande-Chhetri et al., 2017; Ventura et al., 2018). The 
goal was the differentiation of macrophytes to the 
species level, but due to extremely small dimensions, 
morphological and spectral similarity of some 
species, that was not always possible. Therefore, the 
trait-based approach was combined with the species-
based during the feature classes determination. On the 
other hand, due to different spectral and texture 
characteristics of phenological and ecological 
variability of species some classes needed to be 
divided into several feature subclasses (Pande-
Chhetri et al., 2017). Feature classes were named after 
the most dominant plant taxon (Husson et al., 2016) 
or ecological trait.  

Supervised object classification (OBIA) was 
performed in QGIS with Orfeo Toolbox (OTB) 7.2.0 
provider using Random Forest classifier. According to 
several studies OBIA was recognized as superior 
comparing with the pixel-based classification methods 
(Pande-Chhetri et al., 2017; van Iersel et al., 2018) or 
manual mapping (Husson et al., 2016) when it comes to 
high resolution remote sensing data (Ventura et al., 
2018). Random forest classifier was chosen as it 
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Table 1. Spectral indices which were used as classification attributes. 
Abbreviation Index Formula S.O.D.A. Sequoia Reference 

MGRVI Modified Green Red 
Vegetation Index 

(G)2−(R)2/ 
(G)2+(R)2 * * Bendig et al., 2015. 

RGBVI Red Green Blue Vegetation 
Index 

(G)2−(B∗R)/ 
(G)2+(B∗R) *  Bendig et al., 2015. 

GRVI 
MPRI 

Green Red Vegetation Index 
Modified Photochemical 

reflectance Index 

G−R/ 
G+R * * Tucker CJ, 1979. 

Yang et al., 2008. 

NDRGI Normalized difference red 
green index 

(R –G)/ 
(R + G) * * Yang et al., 2008. 

GLI Green Leaf Index 2G - R – B/ 
2G + R + B *  Louhaichi et al., 

2001. 

ExG Excess of green 2G – R – B *  Woebbecke et al., 
1995. 

G-B Green-Blue difference G-B *   

G-R Green-Red difference G-R *   

R-B Red-Blue difference R-B *   

NDVI Normalized Difference 
Vegetation Index 

NIR – R/ 
NIR + R  * Rouse et al., 1974 

NDWI Normalized Difference Water 
Index  

G – NIR/ 
G + NIR  * McFeeters, 1996 

GreenNDVI Green Normalized Difference 
Vegetation Index 

NIR – G/ 
NIR + G  * Gitelson et al., 1996. 

ModifiedNDVI Modified Normalized 
Difference Vegetation Index 

RedEdge – R/ 
RedEdge + R  * Brooks et al., 2019. 

NDREI Normalized NIR – RedEdge 
Vegetation Index 

NIR – 
RedEdge/ 

NIR + RedEdge 
 * Gitelson et al., 1994. 

NGRDI Normalized Red – Green 
Difference Index 

G – R/ 
G + R   * Pearson et al., 1972. 

 
Table 2. Texture indices which were used as classification attributes. 

Abbreviation Index Feature S.O.D.A. Sequoia Reference 

r.tex r.texture 

Sum Average (SA) * * 

 Inverse Difference Moment (IDM) * * 
Angular Second Moment (ASM)  * 
Sum Entropy (SE)  * 

SFS Structural Feature Set 

SFS’Length  * 

Huang et al., 
2007 

SFS’Width  * 
SFS’PSI  * * 
SFS’W-Mean  * 
SFS’Ratio  * 
SFS’SD * * 

HAR 
or 

GLCM 

Haralic Texture 
or 

Gray Level Co-
Occurrence Matrix 

 

Energy  * 

Kupidura, 
2019. 

Entropy  * * 
Correlation  * 
Inverse Difference Moment * * 
Innertia * * 
Cluster Shade  * 
Cluster Prominence  * 
Haralick Correlation  * 

 
represents one of the most successful, redundancy, and 
noise resilient classification algorithms for the remote 
sensing data (Chabot et al., 2018; Villoslada et al., 

2020). It is efficient in distinguishing spectrally similar 
image feature classes (Husson et al., 2017), can operate 
with nonlinear variables (Villoslada et al., 2020), and is 
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most suitable to OBIA classification approach (Ma et 
al., 2017). TrainVectorClassifier tool of QGIS allows 
the classification optimization through the modification 
of algorithm parameters values. Different combinations 
of Maximum depth of trees (5/10/15/20), Maximum 
number of trees in forest (100/150/200/225/250) 
(Chabot et al., 2018) and Minimum number of samples 
in each node (7/10) were tested during the classifier 
optimization phase. Classification accuracy and 
adequacy was assessed using automatically calculated 
per polygon Kappa index and visual interpretation, 
similar as in Taddia et al., (2020) which used overall 
accuracy and visual inspection.  

Classifications were visually evaluated, and 
poorly classified areas were determined. Training data 
sets were improved by adding new reference polygons 
for each inadequately allocated feature class. The 
training process was repeated, and orthomosaics were 
reclassified. This processing step was included to 
provide the targeted increase of classification 
accuracy. After the reclassification corresponding 
feature classes were merged in order to create digital 
maps which provide ecologically meaningful 
representation of aquatic macrophytes and plant life 
forms distribution along the river sections. Each 
macrophyte class is represented with a unique color, 
and relative percentage of the AOI is calculated, as 
well as the absolute area covered by each class 
expressed in m2.  

Twofold accuracy analyses, per-polygon and 
per-pixel approaches (Ye et al., 2018) were applied for 
classification and reclassification phase of aquatic 
vegetation map production, verifying accuracy of the 
classification algorithm (Husson et al., 2017). 
Accuracy of final maps was assessed using ‘per-pixel’ 
approach (Husson et al., 2017). ‘Per polygon’ 
approach focuses on a number of correctly classified 
segments, while ‘per pixel’ approach assess the 
correctly classified area (number of pixels) of each 
feature class (Ye et al., 2018; Stehman & Wickham, 
2011). TrainVectorClassifier tool calculated per-
polygon general performance Kappa index (KI) and 
overall accuracy (OA). Per-pixel accuracy analyses 
were performed using Accuracy tool of Semi-
Automatic Plugin in QGIS calculating Kapa hat index 
(KHI) and overall accuracy (OA) for each map, but 
also User’s (UA), Producer’s accuracy (PA), and 
Kappa Hat index for each feature class (Ventura et al., 
2018; Kaplan et al., 2022). Kappa index were 
interpreted according to Landis & Koch, 1977. Visser 
et al., (2018) pointed out debate about appropriateness 
of Kappa index as classification accuracy measure, but 
as it is still commonly applied in available research it 
was used in this study as well.  
 

3.3.2. Parrot Sequoia – Multispetral imagery 
Multispectral imagery workflow followed the 

one developed for the RGB S.O.D.A imagery. 
Nevertheless, some alterations needed to be 
implemented. UAV images collected via Parrot Sequoia 
camera were preprocessed and geotagged via Postflight 
module of eMotion 3.5.0 software using drone and 
eMotion flight logs. Geotagged images were further 
processed using default settings of Processing module 
of the Pix4D mapper 4.2.27. Multispectral images were 
radiometrically calibrated using Sequoia Reflectance 
Panel and R, G, NIR and RedEdge reflectance maps 
were rendered (Chabot et al., 2018; Brinkhoff et al., 
2018; Taddia et al., 2020; Agioutanti, 2022).  

Before the segmentation NDVI and NDWI 
indices were calculated for every survey site. NDVI 
index was suggested as the addition to the R, G and 
NIR bands by (Chabot et al., 2018) for better 
demarcation of the above-the water features during the 
segmentation process. NDWI index was additionally 
calculated to enhance the open water areas (McFeeters, 
1996) because the segmentation of multiband raster 
compiled of R, G, B and NDVI layers lacked to 
distinguish submerged vegetation from the open water 
area. As reported in (McFeeters, 1996) NDVI and 
NDWI have opposite enhancement focuses on 
terrestrial vegetation and open water subsequently. 
Pixel values of the input reflectance maps and indices 
were normalized by multiplying with 255 as suggested 
in (McFeeters, 1996; De Luca et al., 2019; Agioutanti, 
2022). Normalized layers were merged into one 
multiband raster layer (Chabot et al., 2018; De Luca et 
al., 2019; Taddia et al., 2020). AOI polygons were 
created, multiband rasters were clipped, and 
segmentation process was performed. During the 
segmentation process range radius values of 5, 7 and 
10 were tested, while spatial radius was changed in 
increments of 5 degrees. Due to coarser multispectral 
orthomosaics’ resolution, minimum segment size was 
changed to 20 pixels. In that way similar segmentation 
results could be obtained. Selection of the additional 
spectral indices was based on the bands availability 
and reported potential applicability by various authors 
(Villa et al., 2014; Brooks et al., 2019; Song & Park, 
2020;Villoslada et al., 2020) (Table 1). PCA analyses 
were carried out on multiband rasters (R, G, NIR, 
NDVI, NDWI) and the first axes were used to calculate 
the texture indices (Table 2). Training and validation 
datasets form the S.O.D.A. workflow was spatially 
adjusted in accordance with the MSP orthomosaics, 
and image feature classes were revised before the 
classification process.  

Effort, time and data resolution obtained 
implementing the traditional monitoring scheme and 
UAV based tools were compared. Best aspects of each 
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approach were selected, and the novel combined 
monitoring protocol is proposed.   
 

4. RESULTS 
 

4.1. Aquatic vegetation survey 
 

Aquatic vegetation was assessed along seven 
transects of the lower course of the Danube River in 
Serbia. Due to the terrain configuration, it was not 
always possible to inspect the full 1 km transect length. 
Four river transects were investigated from the boat, 
while the remaining three were assessed from the 
shore. A total of 22 aquatic macrophyte species were 
recorded in 5 plant life forms (Table 3). The average 
time needed to assess the transect was around 40 min, 
ranging 25-100 min, depending on macrophyte 
abundance, diversity of the vegetation structure, and 
river section hydromophological characteristics. 
Depending on vegetation complexity and spatial 
distribution, 19-46 additional vegetation plots were 
recorded and geotagged along the transects.  
 

4.2. Flight 
 

UAV imagery was collected through eight 
flights at four survey locations (Pančevo, Dubovac, 
Slatina and Labudovo okno). At three locations eBee+ 
drone was able to cover two transects per one flight. 
Average time spent to capture 1 km long and about 300 
m wide transect at a height of 185 m for MSP and 215 
m for RGB flights was about 15 min. In order to 
achieve the optimal lateral and longitudinal image 
overlap the drone was collecting about 200-250 photos 
with the S.O.D.A RGB camera, and around 600-1200 
photos with Sequoia MSP camera, covering about 30 

ha area per each river section.  
 
4.3. UAV workflow  

 
During the image adjustment process, some of 

the photos were removed from the collections due to 
inadequate image properties. Adjusted images were 
stitched into the orthomosaics with an average ground 
resolution of 0.024 m/pix for RGB and 0.078 m/pix for 
MSP imagery. Orthomosaics completely covered the 
intended study areas, while only orthomosaic for 
Pančevo survey site resulted with unsatisfactory area 
coverage. Instead of covering the two transects of 1 km 
length, the software generated one in length of 300 m 
for the RGB data and none for the MSP data.  

During the segmentation process spatial radius 
of 30 and range radius of 10 have been chosen as the 
most suitable combination for the RGB orthomosaics. 
In the case of MSP orthomosaics, the range radius was 
lowered to 7, as the value of 10 could not distinguish 
submerged vegetation from the surrounding water. 
AOI polygons were 1 km long, while the width varied 
between 10 m at Pančevo study site and 300 m at 
Dubovac. Prior to the classification, 20 spectral and 
texture characteristics were calculated to describe each 
segment of the RGB and 32 to describe segments 
within the MSP approach (Table 1, 2). 

Emergent and floating species could be mostly 
determined to the species level, except for the yellow 
and white waterlily whose leaves could not be fully 
differentiated. Single individuals of small-scale 
species such as Salvinia natans, Lemna sp., Spirodela 
sp. Could not be distinguished from the orthomosaics, 
not even Hydrocharis morsus ranae and Nymphoides 
peltate, unless they were abundantly present at the spot. 
Information about submerged species under the floating 

 
Table 3. Abundance of macrophyte species recorded using the standard monitoring approach. 
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Slatina_Bara  5      3     4     4 5   4   
Slatina_Dunav 4 5 4 3 5 3 1 3 3  2   3 3 3 3 5 3    4  
Dubovac_A 4 5 3 3    3 4 3    3           
Dubovac_B 4 5          2 3 3 1  1        
Labudovo okno 5 5 2 2 5 2 2 2 3 2     4 4   4 2 3 3   
Pančevo_A  4      2      2     2    2 4 
Pančevo_B  5 2     3        1       2 5 
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vegetation layer could not be assessed as it could not be 
seen from the air. All submerged species were classified 
as ‘submerged vegetation’ feature class, as it was not 
possible to determine the exact species. On the other 
hand, Trapa natans, waterlilies and Phragmites 
communis needed to be represented with more than one 
feature class due to spectral differences plants 
manifested along the transects. In total, 20 feature 
classes were determined: twelve aquatic vegetation 
feature classes, plus two classes of algae occurrence, one 
terrestrial vegetation group and a miscellaneous group 
of five non-vegetation image feature classes. 

During the classifier optimization phase 40 
different combinations of Random Forest parameters 
were tested. Kappa index of the analyses ranged from 
moderate to almost perfect for both, RGB: 0.52 - 0.86 
and MSP approach: 0.53 - 0.81. In both approaches - 
RGB and MSP Minimum number of samples in each 
node 7 produced better results. In the case of RGB 
imagery Maximum depth of trees of 10 produced the 
best results, while for the MSP the results were less 
conclusive. Changing the Maximum number of trees in 
forest caused minimal difference in the classification 
results, in over 90 % of cases it caused less than 0.03 
units of change of Kappa index. Examining the matrix 
of tested combinations none of the options could be 
declared the absolute best, hence the additional visual 
inspection of classifications was conducted. Finally, 
the following combination of parameters was chosen 
as the best option: Minimum number of samples in 
each node: 7; Maximum depth of trees: 10; Maximum 
number of trees in forest: 225. Adding the 
reclassification phase to the workflow led to the 
general increase of the classification accuracy, 
observing both ‘per polygon’ and ‘per pixel’ accuracy 
(Table 4). Even in the situations where improvements 
in classification accuracy metrics were not substantial, 

a more realistic map of the river transect was created. 
‘Per pixel’ accuracy tests generally resulted with 
higher classification accuracy than ‘per polygon’ tests. 

Image feature classes were merged in 16 
ecologically meaningful categories and digital maps 
of each investigated transect were produced. This step 
also elevated the maps' accuracy, leading to the 
average Kappa index of 0.83 (RGB) and 0.85 (MSP), 
and overall classification accuracy of 90 % for both 
approaches. Classification algorithm managed to 
distinguish aquatic vegetation with the almost perfect 
success rate of 0.84 for RGB and 0.95 Kappa index 
value for MSP approach. Producers and Users 
accuracy were 96.13% / 88.29% for RGB and 93.42% 
/97.18% for MSP workflow, respectfully. 
Classification accuracy of individual feature classes 
was generally higher for the MSP than for the RGB 
approach. In the MSP approach all but one aquatic 
vegetation feature class were ‘almost perfectly’ 
classified, while that was not the case for the RGB 
approach (Table 5). Finally, six aquatic vegetation 
maps were created based on the RGB, and five maps 
were created based on the MSP imagery. The total 
area and percentage of each feature class are 
presented in Table 6 and Figures 2-7. 

 
5. DISCUSSION 

 
5.1. Aquatic vegetation field survey   

 
Results of the traditional monitoring approach, 

conducted on selected Danube transects, were in 
accordance with the data recorded during JDS4 along 
the Danube in Serbia realized the year before by the 
same researcher. The average time for the transect by 
boat was 30min during the JDS4, while the transect 
by foot required about an hour. A slightly shorter 

 
Table 4. Training classification accuracy and accuracy of created digital maps. 

KI - Kappa index, OA - overall accuracy, KHI – Kappa hat index, CL – classification, RC – reclassification, MERG - digital maps with merged classes 

  Training / 'per polygon' cl. accuracy Classification / 'per pixel' accuracy of digital maps 
 Transect code KI  

CL 
OA 
[%] 

KI   
RC  

OA 
[%]   

KHI  
CL 

OA 
[%]  

KHI  
RC 

OA  
[%]   

KHI 
MERG  

OA 
[%] 

 Slatina_Bara 0.55 61 0.58 64 0.67 72 0.67 72 0.70 75 
 Slatina_Dunav 0.65 75 0.67 77 0.67 78 0.75 85 0.75 85 
RGB Dubovac_A 0.61 81 0.66 84 0.57 81 0.73 91 0.73 91 
 Dubovac_B 0.55 80 0.71 87 0.89 97 0.87 96 0.87 96 
 Labudovo okno 0.61 71 0.64 75 0.70 77 0.87 91 0.90 93 
 Pančevo_A 0.86 93 0.91 96 0.95 98 0.98 99 0.98 99 
 MEAN RGB 0.64 77 0.70 80 0.74 84 0.81 89 0.82 90 
 Slatina_Bara 0.58 63 0.63 68 0.54 61 0.67 72 0.71 77 
 Slatina_Dunav 0.73 77 0.74 79 0.77 83 0.85 89 0.85 89 
MSP Dubovc_A 0.70 81 0.81 89 0.84 93 0.90 97 0.90 97 
 Dubovac_B 0.75 86 0.77 89 0.86 96 0.94 99 0.94 99 
 Labudovo okno 0.68 74 0.73 77 0.73 79 0.80 85 0.86 90 
 MEAN MSP 0.69 76 0.74 80 0.75 83 0.83 88 0.85 90 
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Table 5. Classification accuracy of aquatic macrophytes feature classes. 
   Submerged 

macrophytes 
Floating rooted 

macrophytes Acropleustophytes Helophytes  

  
  

Sbm 
veg 

Alg / 
mud 

Tra 
nat 

Nym 
pel 

Nuph 
/Nym 

Sal 
nat 

Sal/ 
Lem 

Fil 
alg 

Phra 
com 

But 
umb 

Average 
RGB 

PA  [%] 88 90 92   98 30 87 43 90   
UA  [%] 83 70 87   71 50 100 41 57   

Average per 
Life form 

PA  [%] 87 95 64 90 
UA  [%] 83 79 80  57 

Average 
MSP 

PA  [%] 74 66 97 99 95 79 96 69 94  
UA  [%] 77 75 99 99 83 100 95 97 91   

Average per 
Life form 

PA  [%] 74 96 89 94 
UA  [%] 77 93 97 91 

 
Table 6. Total area of each river transect with percentage covers [%] of each aquatic macrophyte class 
  Area 

[ha] 
Sbm 
veg 

Alg / 
mud 

Tra 
nat 

Nym 
pel 

Nuph
/Nym 

Sal 
nat 

Sal/ 
Lem 

Fil 
alg 

Phra 
com 

But 
umb 

Slatina_Bara  9.9 15 13    15 3   <1 31   
Slatina_Dunav  24.0 10 7 13      3 2 1 1 
Dubovac_A RGB 16.6 20         1 <1 1   
Dubovac_B  10.2 15     1   1      
Labudovo okno  22.3 11 1 34 <1   <1   <1 5   
Pančevo_A  0.2 19                
Slatina_Bara  9.3 11 19    15 3   1 32   
Slatina_Dunav  20.8 9 12 14      4 2 <1   
Dubovac_A MSP 12.6 13         1 <1 <1   
Dubovac_B  10.4 3     1   2      
Labudovo okno  16.7 11 1 36 <1   1   1 12   

 

 
Figure 2. Ortohomosaics and digital maps of the Slatina (Bara) section 

 
investigation time recorded during the JDS4 was 
probably due the lower abundance of macrophytes 
along the JDS river sections. eBee+ regular batteries 
can withstand 59 min of flight, while new smart 

batteries should go up to 90 min, so one battery should 
be able to sustain three 1 km transects in one flight, as 
is proposed by the JDS monitoring scheme for aquatic 
macrophytes, even in suboptimal flight conditions. 
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It should be mentioned that 300 m wide 
transects, which were used in this study, are too wide 
for most of the Danube River course, since aquatic 
vegetation develops mostly in the first 10 m from the 
riverbank. Extending the captured area towards the 
middle of the river in the absence of vegetation is not 
only redundant, but could negatively affect image 

processing, as uniform water areas are challenging for 
the creation of orthomosaics (Kislik et al., 2020). 

Flight altitude in available studies (Brinkhoff et 
al., 2018; Flynn & Chapra, 2014; Taddia et al., 2020; 
Kislik et al., 2020; Ventura et al., 2018; Chabot et al., 
2018) was notably lower than the flight height in this 
study. Resolution of the RGB orthomosaics was 

 

 
Figure 3. Ortohomosaics and digital maps of the Slatina (Dunav) river section 

 

 
Figure 4. Ortohomosaics and digital maps of the Dubovac (A) river section 
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Figure 5. Ortohomosaics and digital maps of the Dubovac (B) river section 

 

 
Figure 6. Ortohomosaics and digital maps of the Labudovo okno section 

 

 
Figure 7. Ortohomosaics and digital maps of the Pančevo_A river section 
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completely satisfactory, while resolution of MSP ones 
should be better, in order to enable recognition of all 
desired image features without referring to the RGB 
data. Lowering the flight height to 120 m would result 
in adequate products resolution of 4 cm2/pix.  
 

5.2. UAV workflow 
 

UAV image overlap was optimal for every 
survey site, resulting in successful creation of the 
orthomosaics. The RGB orthomosaic was only partially 
created at the Pančevo survey site, and the MSP images 
could not be processed successfully in either Pix4D or 
ArcGIS Pro software, which could be due to the 
presence of large uniform water areas. Taddia et al., 
(2020) also reported problems with orthomosaic 
generation, due to the large open water area. Kislik et 
al., (2020) even conducted single image analysis to 
bypass the problem. Such approach was not an option in 
this study because singular images would cover only a 
small percentage of the transect, while the aim was the 
creation of a vegetation map for each river transect.  

Orthomosaic segmentation process was 
performed with low spectral range factors, which were 
selected based on the efficiency in distinguishing the 
patches of submerged vegetation. For the MSP 
approach the range factor needed to be decreased as the 
value used in the RGB workflow was unable to 
successfully delineate submerged vegetation. Similar 
issue was reported in Agioutanti, (2022), where the 
algorithm could not distinguish water from submerged 
algal patches. Low range factors caused sporadic 
oversegmentation, however these artefacts were further 
manageable by proper classification setup, unlike losing 
already frail information about submerged vegetation. 
Several authors also reported that a little 
oversegmentation is a better solution than 
undersegmentation, because it enables detail 
recognition and precise delineation of image features 
(De Luca et al., 2019; Díaz-Varela et al., 2018). In order 
to overcome this under-over-segmentation problem 
(Chabot et al., 2018; Ventura et al., 2018; Visser et al., 
2018) propose multistage orthomosaic segmentation. 
Nevertheless, in this study the goal was the simplest and 
most straightforward mapping strategy so one-scale 
segmentation was applied.  

Visual interpretation of the training and 
validation segments is recognized as a valid approach in 
aquatic vegetation UAV assisted mapping. Similar 
approaches were applied in Pande-Chhetri et al., (2017), 
Husson et al., (2017), Ventura et al., (2018) and Kislik 
et al., (2020). Despite the fact that field data was 
ancillary it  was of substantial importance for the experts 
training and verification of UAV imagery interpretation, 
as noted in Chabot et al., (2016; 2018) as well. 

Ideally, each of 22 macrophyte species would be 
represented with one image feature class within the 
classification process. In that way UAV vegetation 
monitoring would have the same resolution as the 
traditional methods. Due to technical constraints, 
combination of species-based and trait-based 
approaches resulted in 12 macrophyte feature classes, 
such as in many resembling studies (Husson et al., 2016; 
Chabot et al., 2016, 2018; Pande-Chhetri et al., 2017; 
Husson et al., 2017; Villoslada et al., 2020; Agioutanti, 
2022). All submerged species were classified as 
‘submerged vegetation’ feature class as in Chabot et al., 
(2016, 2018), Pande-Chhetri et al., (2017), Taddia et al., 
(2020) as it was not possible to determine the species 
due to the presence of mixed and complex vegetation 
stands, and poor spectral difference between them. 
Although there are studies focused on distinguishing 
and mapping specific submerged species (Brooks et al., 
2019; Flynn & Chapra, 2014; Chabot et al., 2016, 2018; 
Ventura et al., 2018), information about submerged 
vegetation should always be carefully interpreted and 
may be considered scarce. Among the floating species, 
the yellow and white waterlily leaves were combined in 
one class, as in Husson et al., (2016; 2017). Lemnoid 
species could not be separated from Salvinia natans in 
the mixed stands, therefore the mixed group Sal/Lem 
was defined. Emergent species could be determined to 
the species level, but mostly because there were not any 
mixed vegetation stands or plethora of species present. 
Trapa natans class was divided in ‘green’ for regular 
individuals and ‘red’ for orange to red withering 
rosettes. In the same manner Phragmites communis 
classes were named ‘green’ and ‘dry’, but due to tall and 
vigorous emergent stems some fraction of the plants 
within the stands were ‘shadowed’. When it comes to 
the Waterlilies, the regular ‘green’ leaf category was 
defined, but also there was the ‘burnt’ category for the 
leaves affected by the sun glint. For the MSP approach 
the ‘burnt’ class was omitted, as it was not necessary, 
most likely due the radiometric calibration of the images 
prior to analysis. Husson et al., (2016) used separate 
classes for dense and sparse macrophyte stands, while 
Pande-Chhetri et al., (2017) and Ventura et al., (2018) 
divided green and dry or dead plants. Within the MSP 
workflow additional image feature classes needed to be 
defined for the submerged vegetation. The category was 
divided into the ‘deep’ and ‘subsurface’ classes because 
of the different spectral and textural characteristics of 
the stands. Similarly, Chabot et al., (2018) divided 
floating and submerged plants of the same species into 
separate classes. 

Optimization of the Random Forest classifier, by 
changing the algorithm parameters did not have a 
remarkable impact on the classification accuracy. In 
only two out of six investigated sites for RGB and none 
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for the MSP workflow, the change of parameters has led 
to the change of Kappa hat index category according to 
Landis and Koch, (1977). Similar patterns were also 
observed in (Chabot et al., 2018), while in the rest of 
available studies optimization phase was not conducted 
(Husson et al., 2016, 2017; van Iersel et al., 2018; 
Villoslada et al., 2020).  

Aquatic vegetation was 'almost perfectly' 
distinguished from orthomosaics, with an average 
Producers accuracy (PA) of 95.8 % and Users accuracy 
(UA) of 88.1 % for RGB workflow, and 93.4 % and 
97.2 % respectively for MSP workflow. These result 
were better or in line with the results of other studies 
which were mapping the aquatic vegetation per se 
(Husson et al., 2016; Brinkhoff et al., 2018; Kislik et al., 
2020, Agioutanti, 2022). Usability of the final products 
- digital maps of aquatic macrophytes and life forms 
distribution was assessed using per-pixel accuracy. 
Classification accuracy of individual classes was 
generally higher in the MSP workflow. Within the MSP 
workflow all macrophyte classes were almost perfectly 
classified, except the Submerged vegetation which was 
highly ‘substantially’ accurate, while it was ‘almost 
perfectly’ classified within the RGB approach. 
Comparing with the other macrophytes, mapping of 
submerged vegetation using UAV technology appears 
to be quite challenging (Kislik et al., 2020; Agioutanti, 
2022; Ventura et al., 2018), especially within the MSP 
workflow. Chabot et al., (2018) used the ‘rule-based 
feature extraction tools’ to delineate submerged and 
above-water image features. In the same manner, Visser 
et al., (2018) used rule set OBIA and reported rather 
variable results, but nevertheless recognized the 
potential of OBIA in high-resolution image 
classification. Floating and free-floating classes 
predominantly had excellent classification accuracy in 
this study. Similar values were reported by Chabot et al., 
(2018) mapping invasive species in aquatic habitats 
using MSP imagery, while available RGB studies 
obtained slightly poorer results (Husson et al., 2016; 
Husson et al., 2017; Pande-Chhetri et al., 2017). 
Phragmites communis class obtained only moderate 
classification accuracy within the RGB workflow, while 
in the MSP workflow it was almost perfectly classified. 
This discrepancy could possibly be caused by coarser 
GSD of the photogrammetry products (~8 cm/pix) and 
therefore less details within the stands, but also due to 
the calculation of the additional spectral indices which 
ware enabled by NIR and RedEdge band Emergent 
vegetation in other studies has shown similar or higher 
accuracy (Husson et al., 2016, 2017; Pande-Chhetri et 
al., 2017; van Iersel et al., 2018). All of the named 
studies had poorer GSD (>5 cm/pix). Nymphoides 
peltata and Butomus umbelatus classes accuracy were 
not assessed within the RGB workflow, as both groups 

were present in only one river transect with no more 
than 1 % of the area, therefore none of the randomly 
selected validation polygons included segments of these 
classes. 

 
6. CONCLUSION 
 
Joint Danube Survey macrophyte assessment 

guidance assumes the evaluation of aquatic vegetation 
on six survey units at each sampling location, three 1km 
transects on the left and three on the right riverbank 
according to the European standard CEN EN-
14184:2014. In that manner only a relative measure of 
the species' presence and plant life forms at each river 
kilometer is recorded. Introduction of the UAV 
approach would enable the assessment of the total area 
covered with aquatic macrophytes and result in the 
absolute cover values opposing to the relevant ones 
using the traditional methods. On the other hand, with a 
realistic insight into the terrain and habitat types, it 
would be possible to perform a more precise 
intercalibration of the sampling methodology as well as 
the assessment of the condition of distant and 
typologically different sections of large hydrosystems 
such as the Danube. This methodology could also be 
used to monitor aquatic vegetation of moors, flood 
zones and wet areas along rivers, the research of which 
represents a methodological challenge, and is very often 
absent, despite being considered the centres of 
biodiversity of river ecosystems.  
Recommendations: 
• Fixed-winged UAV drones carrying multispectral or 
combined multispectral/RGB cameras.  
• Resolution of the photogrammetry products~3 
cm/pix is adequate for the mapping of aquatic 
vegetation. Determining the photogrammetry products' 
resolution should be cautiously performed. A too high 
imagery resolution could lead to noise saturated 
orthomosaics and to large and computationally 
challenging orthomosaic. 
• Before the flight, each river stretch should be 
inspected using low-cost small copter-type drone to 
determine transect dimensions.  
• Flights can be planned just before each take off as it 
takes only several minutes, but potential take-off and 
landing location should be chosen prior to field work.  
• Longitudinal overlap of 80 % and lateral of 60 % 
showed satisfactory results. In the situations when large 
uniform areas need to be assessed, an increase of the 
image overlap could enable successful orthomosaic 
creation. Photos containing only open water, or 
homogenous riparian forest are challenging to process 
and therefore should not be captured if possible.  
• For the purposes of the ground truthing of the aquatic 
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vegetation, modification of the sampling strategy could 
be performed. Standard transect approach supplemented 
with modified per plot approach could be implemented. 
Rather than collecting a full vegetation plot data at every 
stop, only coordinates of the dominant target species 
could be recorded. In that way macrophyte species and 
groups spatial and temporal patterns could be collected 
and studied.  
• This survey approach enables reliable and unbiased 
field data collection by researchers, technicians, and 
practitioners requiring only basic knowledge about 
species taxonomy and GIS/UAV technology. 
• MSP images should be preprocessed, adjusted, and 
geotagged using suitable software. Also, whenever 
possible, images should be radiometrically calibrated. 
• The combination of the OBIA classification and 
Random Forest algorithm, showed to be suitable and 
was also easily manageable approach.  
• During the segmentation process, the appropriate 
spectral difference factor should be chosen. In order to 
distinguish macrophyte classes, quite small spectral 
differences should be considered as threshold values, as 
aquatic macrophytes tend to have similar spectral 
signatures.  
• Training and validation datasets should be created 
based on expert’s knowledge rather than on excessive 
traditional field work campaigns.   
• Flight missions should be performed before the 
traditional assessment methods. In this way the flight 
itself could be used as input about the aquatic vegetation 
distribution and variation along the transect.  
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