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Abstract: The estimation of flow in river basins is frequently required in hydrological practice and is of 
great economic significance. This study uses streamflow and catchment characteristic data, including land 
use information, from the Sperchios river basin (Central Greece) and applies quantile regression 
modelling. From 100% of the observations, 20% were selected randomly and used for independent testing 
of the quantile regression. The test observations and observations used for the model development were 
found to have similar characteristics. The quantile regression method generally provides accurate flow 
estimates; however, these techniques involve a chance of large errors under particular conditions, and 
provisions should be made accordingly. 
 
 
Keywords: flow estimation; land use; modelling; quantile regression.  

 
 

1. INTRODUCTION 
 
Flow estimation in river basins is a common 

problem in hydrologic practice. There are several 
methods generally adopted for this task, including 
the Probabilistic Rational Method (I. E. Aust., 
1997), the Quantile Regression Technique (Rahman, 
2005, Haddad, 2006), Artificial Neural Networks 
(Glezakos et al., 2009; Iliadis et al., 2011) and 
others. 

Precipitation regression models integrating 
statistical and GIS techniques have become 
widespread and common (Brown & Comrie, 2002). 
In recent years, geographic and topographic factors 
have been integrated into the modelling of 
precipitation (Johansson & Chen, 2005). Authors 
have used weighting functions to incorporate gauge 
data of neighbouring topographic facets for 
regressions (Daly et al., 2002), while others have 
developed models relating climate to site position 
and elevation (Goodale et al., 1998) 

It is more accurate to estimate runoff on the 
basis of geophysical characteristics, as presented by 
Willmott et al., (1985), Dickinson et al. (1993) and 
De Smedt et al., (2000). Due to the complexity of 
hydrological processes and basin characteristics, 

physically based distributed models using GIS 
techniques are becoming popular. Naden (1992) and 
Troch et al., (1994) presented spatially distributed 
hydrologic rainfall-runoff models, including 
hillslope overland flow and channel flow routing. 
Muzik (1996) presented a method for surface runoff 
routing using a GIS-based distributed unit 
hydrograph. Schumann & Funke (1996) applied a 
two-dimensional instantaneous unit hydrograph 
within a GIS framework. Maidment et al., (1996) 
presented an elaborate grid-based model, where the 
spatially distributed unit hydrograph is derived from 
a time-invariant flow velocity field. Olivera & 
Maidment (1999) proposed a method for routing 
spatially distributed excess precipitation over a 
watershed using response functions derived from a 
digital terrain model. Some of these physically based 
distributed models have obtained worldwide 
recognition, including Topmodel (Beven & Kirkby, 
1979; Beven, 1991) and SHE (Abbott et al., 1986; 
Refsgaard & Storm, 1995).  

The main focus of this paper is to present a 
physically based distributed hydrological model that 
uses detailed basin characteristics to predict flow 
using quantile regression.  
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Figure 1. Sperchios river basin map. 

 
2. MATERIALS AND METHODS 
 
2.1 Study area 
 
This study was conducted in the Sperchios 

River basin, located in Central Greece (Fig. 1). 
 

Table 1. Discharge point descriptions. 
 

Name Kastri Komma Kompotades 
Area (km2) 870.55 1282.55 1170.99 
Perimeter (km) 155.90 181.69 174.42 
Mean slope (%) 15.13 13.71 13.91 
Mean altitude (m) 795.65 705.96 705.00 
Roundness index 0.45 0.49 0.48 
Length of main 
stream (km) 45.89 72.99 62.27 

Length of secondary 
streams (km) 2600.69 3694.57 3426.44 

 
The basic characteristics of the three 

discharge points are given in tables 1 and 2. 
Coordinates of the raingauge stations are given in 
table 2, according to the Greek Geodetic Reference 
System 1987 (GGRS87), which is a geodetic system 
commonly used in Greece. GRS80 (Geodetic 
Reference System 1980) is a geodetic reference 

system consisting of a global reference ellipsoid and 
a gravity field model. Although GGRS87 uses the 
GRS80 ellipsoid, the origin is shifted relative to the 
GRS80 geocenter, so that the ellipsoidal surface is 
best fitted for Greece (Delikaroglou, 2008). The 
specified coordinates are measured in meters. 
 

Table 2. Rain gauge station coordinates. 
 

Discharge 
points 

 Stations 
Timphristos Neochori Trilofo 

Kastri Long. 319,509.57 315,128.87 345,728.34 
Lat. 4,309,543.16 4,315,427.67 4,318,435.32 

Komma Long. 319,509.57 315,128.87 345,728.34 
Lat. 4,309,543.16 4,315,427.67 4,318,435.32 

Kompotades Long. 319,509.57 315,128.87 345,728.34 
Lat. 4,309,543.16 4,315,427.67 4,318,435.32 

 
Table 3 and figure 2 were generated based on 

GIS land use digital data and the CORINE land 
cover (CLC) 2000 database (CLC, 2000). 

Pitsiota Zilephto Ipati Lamia 
318,201.90 - - - 

4,320,789.12 - - - 
318,201.90 349,608.86 347,121.90 364,389.66 

4,320,789.12 4,310,940.68 4,303,479.81 4,306,936.53 
318,201.90 349,608.86 347,121.90 - 

4,320,789.12 4,310,940.68 4,303,479.81 - 

http://en.wikipedia.org/wiki/Geodetic_reference_system
http://en.wikipedia.org/wiki/Geodetic_reference_system
http://en.wikipedia.org/wiki/Reference_ellipsoid
http://en.wikipedia.org/w/index.php?title=Gravity_field_model&action=edit&redlink=1
http://en.wikipedia.org/wiki/GRS80
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2.2 Quantile Regression Technique 
 
The United States Geological Survey 

(USGS)-proposed Quantile Regression Technique 
(QRT) was applied at seven gauged catchments of 
three discharge points in the Sperchios river basin. 
The flow quantiles are estimated from recorded 
streamflow data, which are then regressed against 
relevant catchment characteristic variables that 
direct the flow generation process (Benson, 1962; 
Cruff & Rantz, 1965; Riggs, 1973). The quantile 
regression method is expressed as follows: 

 

...b c d
YQ aB C D=  

 

where QY is the flow magnitude with a Y year 
average recurrence interval (flow quantile); B, C, D, 
… are catchment characteristic variables 
(predictors); and a, b, c, d, … are regression 
coefficients. 

The independent variables considered in the 
model are the discharge points’ areas (km2), perimeters 
(km), mean slopes (%), mean altitudes (m), roundness 
indexes, lengths of main and secondary streams (km), 
land use classifications (km2) and mean annual 
precipitations (mm) for the years 1981-1982.  

The output of the model is the yearly flow of 
the river (m3/sec). That the response function can be 
obtained using standard GIS techniques is highly 
convenient. 

Table 3. Land use area (km2) and percentages of the 
discharge points. 

Land use 
(CORINE 

2000 
classification) 

Kastri Komma Kompotades 

Area  
(km2) % Area  

(km2) % Area  
(km2) % 

Broad-leaved 
forest (311) 156.51 17.98 161.14 12.56 159.91 13.66 

Transitional 
woodland-
shrub (324) 

151.93 17.45 207.71 16.20 182.94 15.62 

Mixed forest 
(313) 111.54 12.81 130.23 10.15 115.35 9.85 

Land 
principally 

occupied by 
agriculture, 

with 
significant 

areas of 
natural 

vegetation 
(243) 

261.60 30.05 443.88 34.61 401.38 34.28 

Coniferous 
forest  
(312) 

93.94 10.79 132.48 10.33 121.53 10.38 

Natural 
grasslands  
(321) 

20.92 2.40 32.62 2.54 29.45 2.51 

Sclerophyllous  
vegetation 
(323) 

73.98 8.50 174.36 13.59 160.31 13.69 

 

 
Figure 2. Sperchios river land use map. 
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The analyses were performed using GIS 
ArcView 9.3 (van Lammeren et al., 2009) and an 
extension command SPSS_QUANTREG that allows 
the performance of quantile regressions using the R 
package QUANTREGSPSS 19.0 (IBM, 2012). 

 
3. RESULTS 
 
Each of the flow quantiles was regressed 

against the 11 predictor variables using the SPSS 
extension command QUANTREG. A number of 
alternative models were developed for each of the 
quantiles. The model that showed the highest 
coefficient of determination (R2) and the lowest 
standard error of estimate (SE) and that satisfied the 
model assumptions most closely (as discussed 
below) was selected. 

The regression coefficients in the prediction 
equation were found to be significantly different 
from zero (at a significance level of 0.05). The value 
of R2 is very high (0.915 for the fitting and 0.938 for 
the testing data), and the SEs are acceptable (8.45% 
and 6.19% of the mean observed flow quantile for 
the fitting and testing data, respectively).  

The selected regression equation was checked 
against the least squares assumptions (Norusis, 
2000). The normal cumulative probability plot did 
not show a significant departure from a straight line, 
indicating that the residuals were approximately 
normally distributed (Fig. 3). 
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Figure 3. Normal quantile-quantile plot of residuals for Q. 

 
The plots of the standardised residuals against 

the standardised predicted values did not show any 
systematic patterns between the predicted values 
and the residuals (Fig. 4). These results indicate that 
the assumptions of the linear model and the 

homogeneity of variance were largely satisfied for 
the prediction equations. 
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Figure 4. Plot of standardised residual and standardised 

predicted values for Q. 
 

The value of the Durbin-Watson statistic was 
found to be within the range 1.55-1.65, which is 
close to 2; thus, the residuals are not highly 
correlated. The values of the Durbin-Watson 
statistic range from 0 to 4, and a value of 2 indicates 
the absence of any correlation. Neither outliers nor 
extreme data points were found. 

The selected prediction equation is: 
 

-0.045 -0.132

0.265 0.573

0.322 -8.166

3.929

-0.128

0.009 0.001

2,388 - 010
 

  
  

  
   
 

Q e Year Area
Perimeter Mean Slope

Mean Altitude Roundness Index
Main Stream Lenght
Secondary Streams Length
Land Use Land Use Area
Mean

= × ×

× × ×

×

×

×

× ×

× 0.002 Yearly Precipitation

 

A comparison of the calculated and observed 
discharges is presented in figure 5. A reasonable 
agreement between the model results and the 
observed data is seen. Because the model is clearly 
overparameterised, we do not intend to optimise its 
performance by calibration. In addition, 
hydrological observations are never completely free 
from error. Moreover, due to the natural variability 
of hydrologic processes and the complexity of basin 
characteristics, it is evident that mathematical 
models will never reach perfection. Hence, we 
accept the results as they are.  
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Figure 5. Observed and predicted discharges.  
 
4. DISCUSSION 
 
This study applies Quantile Regression for 

flow estimation in a Central Greece river basin. The 
following conclusions can be drawn from this study: 

• The Quantile Regression method provides 
accurate flow estimates. 

• There is approximately an 8% chance that 
the error in flow estimates will exceed 100%. The 
users of these techniques should be aware of these 
large errors and make the necessary provisions 
accordingly. 

The developed model is a physically based 
distributed hydrological model for predicting the 
hydrologic behaviour in a river basin. The 
generation of flow depends on rain intensity, which 
depends on slope and land use. The runoff is 
subsequently routed through the basin along flow 
paths determined by the topography using a 
diffusive wave transfer model that leads to response 
functions between any start and end point, 
depending on the slope, flow velocity and 
dissipation characteristics along the flow lines. The 
model uses detailed basin characteristics, and the 
calculations are performed with standard GIS tools. 
Thus, the model is especially useful for analysing 
the effects of topography and land-use on the 
hydrologic behaviour of a river basin. Finally, such 
information can enable us to determine the influence 
of changes in land use on the hydrological 
behaviour of the river basin.  
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