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Abstract: Rapid urbanization and intensive agricultural practices in Vietnam's Central Highlands have 
substantially transformed land use/land cover (LULC) patterns, with implications for groundwater 
resources necessitating measurement. The objective of this investigation is to examine the links between 
multi-temporal variations in LULC and changes in underground water flow in Al Ba Commune, Gia Lai 
Province. Supervised object-based classification of Landsat and Sentinel imagery from the past 25 years 
has produced consistent LULC maps as inputs for the model. Geospatial data of LULC, meteorological 
data, and in-situ data of groundwater flow (Q) were used to calibrate and validate the integrated 
hydrological MIKE SHE model and simulate past Q conditions for correlation analysis. With these data on 
LULC and groundwater flow, this study investigates the relationship between LULC changes and Q using 
Multivariate Linear Regression (MLR) and Ridge Regression models. The MLR model showed high R² 
(0.91) but positive impacts of all LULC classes on Q, contrary to expectations. Further analysis with 
Variance Inflation Factor (VIF) revealed multicollinearity among LULC variables, which was addressed 
using Ridge Regression with a bias factor to correct for this issue. The revised model demonstrated that 
non-vegetative covers negatively affect Q while vegetative covers have a positive impact. These results 
highlight the complex dynamics of LULC changes on groundwater resources, which can be detected by 
statistical approaches. The results of study could be important for sustainable land management. 
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1. INTRODUCTION 
 
Groundwater, the fundamental life-sustaining 

earthly resource is increasingly fraught with demand 
due to escalating population numbers, burgeoning 
urban growth and intensifying agricultural practices 
(El-Khoury, 2022; Salem et al., 2023). Such 
dynamics are propelling rapid modifications in land 
use/land cover (LULC) within human timelines 
(Ansari et al., 2016; Siddik et al., 2022a; Al-Kindi et 
al., 2023;). Anthropogenic interference has 
significantly impacted nature's recharging 
mechanisms along with patterns of subterranean 

water flow cycle too (Scanlon et al., 2005; Han et al., 
2017; Mojid & Mainuddin, 2021; Siddik et al., 
2022a). Further compounding this quandary is 
precipitous exhaustion occurring from over-
extraction of groundwater – a phenomenon visible 
across diverse global landscapes as India (Hussain, 
2022; Koshy, 2023), China (Lancia et al., 2022; 
Wang et al., 2022; Huang et al., 2023) or the United 
States (USGS, 2018; O’Neill et al., 2023) amongst 
others (Fienen & Arshad, 2016; González-Trinidad et 
al., 2017; El-Khoury, 2022).  

In the context of Vietnam, groundwater 
resources play a vital role in supporting various 
sectors such as agriculture, industry and domestic use 
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in many parts of the country. The groundwater 
resources in Vietnam are currently at risk of depletion 
and severe pollution (VWSA, 2022). This situation is 
apparent in the Central Highlands region, known for 
its abundant natural resources and socioeconomic 
potential, which is facing significant challenges due 
to the lack of water resources in areas with scarce 
water supply (DWRM, 2015; Phong, 2020; Nguyen 
et al., 2021). Provinces such as Dak Lak, Gia Lai, Kon 
Tum, Dak Nong, and Lam Dong have been 
unknowingly using groundwater sources without 
proper planning, leading to reduced groundwater 
availability during the annual dry season (DWRM, 
2015). The region's forests are also suffering 
destruction due to factors such as decreasing rainfall 
and prolonged dry seasons. The high demand or 
irrigation water, particularly for long-term industrial 
crops like coffee and pepper, has led to the extensive 
and unregulated utilization of underground water 
sources, resulting in uncertain outcomes and 
perforations, contributing to groundwater depletion in 
the region (Dan, 2016; Nguyen et al., 2021; VAWR, 
2021). 

It is apparent from the mentioned contexts that 
urbanization is leading to the constant conversion of 
forests and vegetated regions into farmland, cities, 
and industrial areas. Each of these transformations 
has diverse impacts on the recharge rates of 
groundwater (Baker & Miller, 2013; Kuroda et al., 
2017; El-Khoury, 2022; Siddik et al., 2022a). Thus, 
the quantification of the effects of changes in land 
cover on groundwater sources and the formulation of 
well-informed groundwater management policies is 
one of the rational actions (El-Khoury, 2022; Al-
Kindi et al., 2023). and it plays a crucial role in 
contributing to Sustainable Development Goal 6 of 
the United Nations (Mensah et al., 2022).  

Extensive research has been conducted to 
understand the impact of LULC changes on various 
aspects of groundwater systems, including recharge 
rates (Devi et al., 2020; Siddik et al., 2022a; Salem et 
al., 2023), water table levels (Elmahdy et al., 2020; 
El-Khoury, 2022; Salem et al., 2023), and quality of 
groundwater (Mondal et al., 2020; Ahmad et al., 
2021; Yadav & Yadav, 2023). These studies have 
applied a range of methodologies and technological 
tools to assess the influence of LULC alterations on 
groundwater resources. Among these, the MIKE SHE 
hydrological model has emerged as a particularly 
effective tool in capturing the complexities of 
groundwater response to LULC changes over time 
(Im et al., 2009; Wijesekara et al., 2010; Ma et al., 
2016; Salem et al., 2023). This model uses a physics-
based integrated catchment modelling system to 
describe in detail the structure of the unsaturated and 

saturated zones below the ground surface, effectively 
dividing them into different soil layers. This allows 
the integration of comprehensive land cover, terrain, 
hydrometeorological and soil data to provide 
integrated modellings of catchment hydrology such 
as precipitation, infiltration, surface water flow, 
groundwater flow, recharge and evapotranspiration 
processes (Sandu & Virsta, 2015; Prucha et al., 2016; 
MIKE SHE, 2023). The ability of the MIKE SHE 
model to simulate interconnected hydrological 
processes has made it invaluable for analysing the 
impacts of land cover on groundwater flow (Keilholz 
et al., 2015; Ma et al., 2016; Duranel et al., 2021; 
Salem et al., 2023). Despite previous efforts using 
MIKE SHE and remote sensing to assess these 
impacts (Wijesekara et al., 2010; Keilholz et al., 
2015; Shu et al., 2018), a definitive link between land 
cover changes and groundwater dynamics remains to 
be established. The hypothesis is that transformations 
in land cover classes will correlate significantly with 
fluctuations in groundwater flow. The results are 
expected to quantify and evaluate the impacts of 
different LULC-type changes on groundwater flows. 

This study aims to explore the relationship 
between land cover changes and groundwater flow in 
Al Ba Commune, Chu Se District, Gia Lai Province, 
Vietnam, from 1988 to 2022, by using the MIKE SHE 
model combined with object-based land cover 
classifications from multi-temporal satellite imagery 
(Landsat 5-LST5, Landsat 8-LST8, Sentinel 2A-
S2A). It involves generating land cover maps, 
simulating past groundwater conditions with the 
MIKE SHE model, and applying regression model to 
quantify the impact of land cover changes on 
groundwater. The expected outcome is to better 
understand this relationship to support sustainable 
groundwater management and informed land use 
planning in the region. 

 
2. MATERIALS AND METHODS 
 
2.1 Study area  
 
The selected pilot area is located along 

Provincial Road 438 in Al Ba Commune, Chu Se 
District, Gia Lai Province, Vietnam. It covers an area 
of approximately 290 hectares and includes various 
terrains such as bare soil, residential areas, cultivated 
land, and wetlands. The pilot area is mostly composed 
of weathered basaltic soils that have undergone 
substantial weathering procedures.  

The pilot area resides in a highland tropical 
monsoon climate region featuring substantial 
humidity levels and precipitations. Typhoon 
occurrences are a rare phenomenon within this 
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locality. The climate is separated into two primary 
seasons, the rainy and dry seasons. The rainy season 
normally persists from May to October, while the dry 
season extends between November and April of the 
following year. The yearly temperature ranges from 
22 to 25oC, and the average annual precipitation 
ranges from 1,750-2,500 mm.  

The Al Ba water system comprises the main Ia 
Pal tributary, named Ia Hboong stream, which is 
approximately 29 km in length. The flow direction is 
from northwest to southeast, passing through the Phu 
Thien district before flowing into the Ba River. The 
location of the spring in the pilot area was determined 
by flow measurement and geological structure survey 
using three boreholes. Figure 1 describes the study 
area. 

 
2.2 Materials 
 
2.2.1 Data on natural conditions 
In connection with the groundwater flow 

simulation, we provide a more detailed insight into 
the geological data and the groundwater table. 
Geological data was collected by conducting 
measurements and surveys at three drilling sites 

within the study basin (see Figure 1-d). Each borehole 
was drilled to a depth of approximately 45 m. The 
predominant geological formation comprises basaltic 
volcanic deposits in the Pliocene-Pleistocene 
formation, which has been divided into four distinct 
layers (see Figure 2). The dimensional distribution of 
the geological strata in the pilot basin is shown in this 
data. Four layers of soil profile were determined from 
the boreholes.  

The depth of the groundwater table (see Figure 
3) shows that the groundwater flow direction is 
concentrated towards borehole LK1. This borehole is 
close to the spring of the pilot basin and is also the 
lowest point of water accumulation in the basin. 
Based on the horizontal extent of the groundwater 
table (refer to Figure 4), the elevation of the 
groundwater level (blue line) changes according to 
different positions on the cross-section of the 
groundwater table. The depth of the underground 
water level gradually decreases as it approaches the 
spring location, from LK3 to LK1. 

To summarise the section materials, Table 1 
synthesises all inputs into three models: (1) MIKE 
SHE model; (2) LULC classification model; and (3) 
Multivariate regression model. 

 

Figure 1. (a) Vietnam on Google Earth; (b) Chu Se District with 10 m DEM; (c) Al Ba Commune and location of 
hydro-meteorological station; (d) Pilot basin location with boreholes for soil profile measurement and spring location 
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Figure 2. Geological layers at three boreholes 

 

 
Figure 3. Direction of groundwater flow in the pilot basin 

 
2.3 Methods 
 
2.3.1 LULC classification  
Before obtaining the LULC information from 

the aforementioned remote sensing images, these 
images underwent pre-processing procedures. The 
pre-processing procedures included (i) radiometric 
calibration, (ii) geometry adjustment, and (iii) scaling 
to match the dimensions of the research area. The 
objective of these procedures was to consolidate the 
input data for the LULC categorization. 

The supervised object-based image analysis 
(OBIA) method was utilized for the image 
interpretation of LULC classification (see Figure 5). 
The proposed approach uses a segmentation 
procedure to group adjacent pixels based on their 
commonalities in color and form features. This 

involves calculating the mean pixel values and 
integrating geographic data. The utilization of 
segmented objects in the images provides a more 
accurate representation of real-world properties, 
leading to improved classification outcomes (ESRI, 
2023). 

 

 
Figure 4. Simulated groundwater level line (horizontal 

extent passing through LK1-LK2-LK3) 
 

 

 
Figure 5. Workflow of supervised OBIA 

 
In the schema creation stage, six classes were 

established based on the features of the pilot area. 
These classes consist of bare soil, built-up areas, 
cropland, forest, rangeland, and wetland. Each class 
is characterized as (1) Bare soil refers to soil that is 
devoid of vegetation and has no specific usage; (2) 
The built-up area encompasses residential and 
commercial areas, as well as roads, paved with 
concrete that lack vegetation; (3) Cropland is 
agricultural land used for growing crops. In the 
research field, cropland is predominantly utilized for 
cultivating arid crops such as upland rice, perennial 
crops, including coffee and pepper, and short-term 
crops such as hybrid maize, peanuts, and sesame; (4) 
Forest encompass planted woodlands that have 
diverse purposes, such as production, conservation, or 
special use, and comprise of trees such as eucalyptus 
and acacia; (5) Rangeland open and uncultivated 
lands used for livestock grazing; (6) Wetland 
primarily occur in the form of paddy fields, 
undeveloped land that retains water, and to a lesser 
extent, dry river and streambeds. 
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Table 1. The required input data 
Model Input Sources Descriptions 

MIKE 
SHE 
ground-
water 
model 

DEM 10m x 10m ESA-ALOS PALSAR 
The current topography of the pilot area can be simulated 
using the DEM, which ranges from +276 to +653 metres. The 
terrain in the study area slopes steeply from north to south. 

Geological data at 
3 boreholes 

From this research’s 
surveys and measurements 

Describe the distribution of geological layers in the pilot area 
in terms of their dimensions. 

Precipitation & 
Evapotranspiration 
data 

The real-time daily 
measurements recorded at 
the Pleiku station  

The station is in Gia Lai province with the data spanning 
from 1988 to 2022. Represent the meteorological conditions 
the pilot area, spanning from 1980 to 2022. 

Leaf Area Index 
(LAI) Calculated from LULC data 

The LAI, or total leaf area per unit of land area, is used to 
assess plant light absorption and water evaporation capacity, 
calculated using the Specific Leaf Area Vegetation Index 
(SLAVI) by Lymburner et al., (2000). LAI of each LULC 
class: Baresoil & built-up area (0), cropland (1.05), forest 
(1.18), rangeland (0.63), wetland (1.05). 

Root depth 

From this research’s 
surveys with local 
authorities and research of 
Bouillet et al., (2023) 

The data show how different plant roots penetrate the earth, 
affecting water absorption. Bare soil and built-up areas have 
no root depth. Rooth depth of each LULC class: Baresoil & 
built-up area (0 m), cropland (0.6 m), forest (2 m), rangeland 
(0.3 m), wetland (0.9 m).  

In-situ measured 
groundwater flows 

From this research’s 
surveys and measurements 

In-situ groundwater flow data measured at the spring 
locations were gathered in 5 phases between 2021 & 2022 to 
calibrate & validate the MIKE SHE model. 

LULC 
classifica-
tion model 

Satellite images 
(LST5, LST8, 
S2A) 

USGS EarthExplorer 
(LST5, LST 8); Copernicus 
browser (S2A) 

Satellite images from 1988 to 2022 were used to derive 
LULC data for the study area. The highest quality images are 
selected, with a 10% cloud cover threshold. The model 
includes 25 years from 1988 to 2022, with LST5 images from 
1988 to 2011, LST8 images from 2014 and 2015, and S2A 
images from 2016 to 2022. 

Digital maps Local authorities 
Local authorities' LULC maps have been collected for years 
to support satellite image classification, with overlapping 
VN-2000 coordinate system maps used for processing. 

Multiva-
riate 
regression 
model 

Simulated 
groundwater flows 

Data from MIKE SHE 
groundwater model. 

The regression model was developed using 1988-2018 
simulated groundwater flow data at the spring location & 
validated using 2019-2022. 

Area of each 
LULC type by 
years 

The data were extracted 
from the LULC 
classification model from 
1988-2022 

The data were extracted from the LULC classification model 
from 1988-2022, with 1988-2018 for regression model 
development & 2019-2022 for model validation. 

2.3.2 Simulation specification of MIKE SHE 
model 

The MIKE SHE model is constructed to 
simulate integrated processes of overland flow, 
unsaturated flow, saturated flow, and evaporation 
through vegetation cover. 

(a) To describe natural surface water movement, 
the Overland Flow module of MIKE SHE solves the 
Saint Venant equations using the diffusion wave 
approximation (DHI, 2023). Overland flow simulates 
the movement of ponded surface water across the 
topography. It was imulated using the Simplified 
Overland Flow Routing method. 

(b) The flow in the saturation zone of the MIKE 
SHE model is expressed by Darcy's three-
dimensional flow equation (DHI, 2023): 

 (1)  

where, Kxx, Kyy, and Kzz are the hydraulic 
conductivities along the x, y and z axes of the model, 

which are assumed to be parallel to the principle axes 
of hydraulic conductivity tensor; h is the hydraulic 
head; Q represents the source/sink terms; and Ss is the 
specific storage coefficient. 

(c) Unsaturated flow is one of the main processes 
simulated in MIKE SHE. In unsaturated areas, flow 
typically occurs predominantly in the vertical 
direction, as gravity plays a major role in the 
infiltration process. Therefore, unsaturated flow in 
MIKE SHE is calculated in a 1D vertical direction, 
and in this study, Richard's equation (DHI, 2023) is 
applied for the computation of unsaturated flow: 

𝑪𝑪
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏 =

𝝏𝝏
𝝏𝝏𝝏𝝏 �𝑲𝑲

(𝜽𝜽)
𝝏𝝏𝝏𝝏
𝝏𝝏𝝏𝝏� +

𝝏𝝏𝝏𝝏(𝜽𝜽)
𝝏𝝏𝝏𝝏 − 𝑺𝑺 (2)  

Where ψ is the pressure head, K(θ) is the unsaturated 
hydraulic conductivity, S is the root extraction sink 
term and C is soil water capacity. S is calculated 
through transpiration in the root zone (the upper part 
in the unsaturated zone) for each computational node 
in the model. Actual transpiration is calculated in 
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Equation 5 below and depends on Leaf Area Index 
(LAI), soil moisture content in the root zone and root 
density. 

(d) The calculation of evapotranspiration in the 
MIKE SHE model is based on root depth and 
vegetation cover density (DHI, 2023). 
 

2.3.3 Multivariate linear regression analysis 
Multivariate linear regression (MLR) was used 

to analyze the correlation between LULC changes 
and groundwater flow Q. The input of this model is 
the time-series LULC data collected from 1988 to 
2022, consisting of areas of six LULC classes and the 
corresponding time-series Q data for the same period 
served as the target variable. Initial data processing 
involved removing any rows with missing values, 
leaving a final dataset of 25 years. In this 25-year 
dataset, the first 21 years in the duration of 1988–
2018 were used as training and testing datasets with 
the Q generated from the MIKE SHE model. This 
dataset was then split into 80% for model training and 
20% for testing using random sampling. Meanwhile, 
the last four years from 2019 to 2022 were used as a 
validation dataset, with the Q data being the in-situ 
data collected from the pilot area. An MLR model 
was then developed using the scikit-learn library in 
Python. A linear regression model was fitted to the 
training set to establish the relationship between the 
selected LULC features and groundwater flow. The 
trained model was then used to predict Q for a 
validation period of 2019–2022, based on its LULC 
composition. The equation of the MLR algorithm that 
is being fitted in the model is as follows:  

 (3)  
where, y is Groundwater level (target variable); X1 is 
Bare soil (LULC feature 1); X2 is Built-up (LULC 
feature 2); X3 is Cropland (LULC feature 3); X4 is 
Forest (LULC feature 4); X5 is Rangeland (LULC 
feature 5); X6 is Wetland (LULC feature 6); β0 is 
Intercept term; β1, β2, β3, β4, β5, β6 is Coefficient 
values corresponding to each LULC feature; ε is Error 
term. 

 
2.3.4 Calibrations and validations 
Calibrations and validations were performed 

on three models LULC classification model, MIKE 
SHE model, and MLR model. 

(a) For LULC model, the results of LULC 
classification were evaluated using Cohen’s Kappa 
(K) method. K is a robust statistic. It can be used to 
test either interrater or intrarater reliability (McHugh, 
2012). K ranges from -1 to +1, with 1 indicating 
complete agreement between raters. 

To conduct the assessment, 500 samples were 

randomly selected, and distributed evenly across the 
six LULC classes. These samples have been made 
regarding Google Earth images, LULC-collected 
maps and field survey information. The Kappa 
coefficient is described by Equation 12. 

K = (Po-Pe)/(1-Pe) (4)  

where Po is a probability of agreement and Pe is a 
probability of random agreement. 

(b) Calibration and validation of the MIKE SHE 
model for the groundwater flow are crucial processes 
to ensure the accuracy and reliability of the model. 
The MIKE SHE model for the research area in Al Ba 
was calibrated and validated based on measured 
groundwater flow data at the pilot area. During the 
construction of the model, many uncertainties arise, 
for which calibration and validation operations are 
important. However, due to the lack of measured 
groundwater flow data that can be used for calibration 
and validation operations, the groundwater flow 
simulation can only provide informative information. 
The study measured groundwater flow at the spring 
location in five phases: Phase 1 (11/2021), Phase 2 
(02/2022), Phase 3 (05/2022), Phase 4 (08/2022), and 
Phase 5 (10/2022). Phase 1 and Phase 2 represent 
actual groundwater flow data during the dry season 
(November 2021 - March 2022), while Phase 3, Phase 
4 and Phase 5 are measured during the wet season 
(May 2022 - October 2022). Measurements were 
taken at intervals of 2-3 months to ensure a suitable 
time gap between the actual data used for calibration 
and verification. The parameters and characteristics 
of the MIKE SHE model were adjusted to fit the 
observed data during the calibration step. The 
validation step assessed the reliability of the MIKE 
SHE model for the pilot watershed, using the 
measured data from Phase 1 and Phase 2. 

(c) MLR model performance was evaluated on 
both training and test sets using metrics including R², 
MAE, MSE, and RMSE to check for overfitting. 
According to Chicco et al., (2021), the R² (Coefficient 
of determination) metric (Equation 13) reveals the 
proportion of the dependent variable's (y) variability 
attributed to the independent variables X. Its scale 
ranges between 0 and 1, with a score nearer to 1 
reflecting a stronger association. The MAE (Mean 
Absolute Error) is the average over the test sample of 
the absolute differences between prediction and 
actual observation (Equation 14). The MSE (Mean 
Squared Error) represents the average squared 
deviation between estimated values and the actual 
values (Chicco et al., 2021). Its square root is known 
as the RMSE (Root Mean Squared Error) which has 
the same units as the variable. Both MSE and RMSE 
take the error magnitude into account (Equations 15 
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and 16). 
R² = 1 - (SSres/SStot) (5)  

𝑴𝑴𝑴𝑴𝑴𝑴 =  
𝟏𝟏
𝒏𝒏� �𝒚𝒚𝒚𝒚𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 − 𝒚𝒚𝒚𝒚𝒑𝒑𝒑𝒑𝒑𝒑�

𝒏𝒏

𝒊𝒊=𝟏𝟏
 (6)  

𝑴𝑴𝑴𝑴𝑴𝑴 =  
𝟏𝟏
𝒏𝒏� �𝒚𝒚𝒚𝒚𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 − 𝒚𝒚𝒚𝒚𝒑𝒑𝒑𝒑𝒑𝒑�𝟐𝟐

𝒏𝒏

𝒊𝒊=𝟏𝟏
 (7)  

𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 = √𝑴𝑴𝑴𝑴𝑴𝑴
 

(8)  

where SSres is the Residual sum of squares; SStot is 
the Total sum of squares; yireal is observations; yipred is 
predictions. 
 

3. RESULTS AND DISCUSSION 
 
3.1. LULC situation from 1988 to 2022 
 
The Kappa (K) results for 25 years of LULC 

categorization vary from 0.844 to 0.898, with an 
average of 0.871. These results show that the LULC 
classifications for Al Ba's pilot area are suitable for 
use as input data for the MIKE SHE model and 
subsequent related LULC analysis.  

Between 1988 and 2022, the land cover in the 
study area underwent significant changes. Local 
authorities in Al Ba Commune and Chu Se District 
identified population growth, forest resource 
encroachment, and agricultural expansion as the main 
drivers of forest degradation. Reforestation efforts are 
often ineffective due to the remoteness of areas, limited 
resources for investment among local families, and 
reliance on inconsistent provincial funding. This results 
in small and dispersed afforested patches. In addition, 
recurrent droughts leading to forest fires and poor soil 
nutrients contribute to the loss of forested areas. 

Based on Figure 6, spatially, the bare soil class 
was initially central from 1988-1992, then spread 
eastward, dominating by 2001-2022, and replacing 
forests. Cropland and built-up areas retook central bare 
soil from 2014 to 2021. Urban areas, starting in the 
center from 1988 to 1990, expanded westward and 
south/east from 1992 to 2006, covering the entire study 
area by 2010 to 2022. Croplands centered initially, 
expanded westward until 2006, and then replaced bare 
land and forests eastward until 2022. Forests covered 
east and west in 1988, but the western forest declined 
from 1989, while eastern forests disappeared from 2020, 
with slight rebounds in 2006 and 2020. By 2022, scarce 
forest remained in the northeast. Rangelands and 
wetlands fluctuated seasonally, with no clear trends.  

The analysis of LULC trends (see Figure 7) 
reveals a decrease in natural land covers, such as 
forests and rangelands, in contrast to the expansion of 
anthropogenic land covers, including croplands, 
built-up areas, and bare lands. In 1988, forested areas 
were the most extensive at 24.83 km², while cropland 

(5.11 km²) and rangeland (4.66 km²) were less 
extensive. Over the years, the built-up area has 
increased more than sixfold to 3.05 km² in 2022, and 
bare soil has more than doubled to 5.26 km². These 
changes are indicative of escalating urbanization and 
land degradation. 

The breakdown by decade illustrates the 
dynamic changes in LULC. Between 1988 and 1997, 
the main driver of change was agricultural expansion, 
with cropland area increasing to 6.39 km² and built-up 
area doubling to 0.93 km². Forests and rangelands 
experienced only slight decreases. Between 1998 and 
2006, crop cultivation intensified, peaking at 17.4 km², 
while forest coverage decreased to 7.59 km² and built-
up areas and rangelands showed fluctuations. Between 
2008 and 2017, there was a critical period where crop 
cultivation stabilized at around 17.3 km², bare soil 
increased to 7.73 km², and forests reached a low point 
of 2.84 km² in 2015, indicating severe degradation. 
Urban areas continued to expand steadily. Between 
2018 and 2022, there were variations in LULC 
distribution, with bare soil areas peaking at 6.30 km² in 
2019, followed by a decline and then an increase to 
5.26 km² in 2022. Built-up areas consistently grew, 
reflecting ongoing urbanization. Wetlands experienced 
dramatic fluctuations, peaking at 6.56 km² in 2019 
before declining and then moderately increasing to 
2.53 km² in 2022. The area of cropland decreased 
significantly, and the forest cover exhibited a pattern 
of initial decline, followed by a slight increase in 2020, 
and then another decrease to 8.60 km² in 2022, 
demonstrating the changing dynamics in forestry. The 
rangeland increases from 9.07 km² to 13.15 km², 
indicating a shift towards grazing.  

During 2019-2020, the forest area in Chu Se 
district increased. Local authorities' records indicate 
that the main forest type in the area is acacia, which 
is mainly cultivated for production rather than 
conservation purposes. In 2019, Chu Se District 
reported a total forest area of 120.98 km², with 2.06 
km² allocated to timber production. Out of the total 
area, only 0.29 km² were officially designated as 
forest, while 1.77 km² had not yet become forests. By 
2020, the area allocated to timber production had 
increased slightly to 1.95 km². As a result of this 
situation, there has been a modest increase in forest 
cover within Al Ba commune. Overall, the analysis 
indicates a reduction in forest area in favor of 
expanding agriculture and urbanization. 

 
3.2 Groundwater flow simulation  
 
The calibration and validation of the model 

demonstrate a comparison between the modelled and 
measured groundwater flow data at the spring location 
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Figure 6. LULC maps of Al Ba’s pilot area from 1988 to 2022 

 
Figure 7. Statistics on changes in LULC area from 1988 to 2022 
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(Figure 8). Despite the limitations in sampling data 
from the pilot basin, the model has undergone 
necessary adjustments to make the model data align 
with the measured data in Phase 3, 4, and 5. Moreover, 
the validation results of the model with the measured 
data from Phases 1 and 2 have shown the model's 
suitability for the pilot basin in simulating groundwater 
flow. The study involved simulating a groundwater 
model in the Al Ba area of Gia Lai province over a 
period of 25 years, from 1988 to 2022.  

Figure 9 shows the average annual groundwater 
flow from 1988-2022. Overall, there has been a 5.8% 
decrease in flow rate from 1988 (0.69 l/s) to 2022 (0.65 
l/s). The highest average flow rate was recorded in 
1992 at 0.69 l/s, while the lowest was recorded in 2016 
at 0.598 l/s.  

Over 34 years, the Gia Lai-Central Highlands 
experienced seven major droughts during dry seasons, 
specifically in 1988-1990, 1993-1996, 1998-2003, 
2008-2011, 2014-2016, and 2018-2019 (Le & Nguyen, 
2005; Nguyen, 2011; Bui, 2014; Cao et al., 2016; 
Tuan, 2016; Tran, 2019). These droughts were linked 
to an early cessation of the rainy season, resulting in 
lower-than-average rainfall and underfilled water 
reservoirs, some reaching as low as 20-30% capacity 
(Bui, 2014). The region faced insufficient water flow, 
droughts, and shortages exacerbated by increased 
water demand for agriculture exceeding irrigation 
capacity (Le & Nguyen, 2005; Bui, 2014). The Central 
Highlands' water supply relies on rain, soil water 
retention, and vegetation, and water regulation by 
hydroelectric reservoirs has further stressed 
agricultural water intake, impeding efforts to restore 
natural downstream flows during droughts (Bui, 2014; 

Tran, 2019). These droughts have caused economic, 
social, and environmental damages, including 
heightened forest fire risks and water scarcity for 
ecosystems. Conversely, periods of increased 
groundwater flow occurred in 2012-2013, 2016-2018, 
and 2020-2021, often due to floods and storms (Le, 
2013; Nguyen, 2014; Gia Lai People Committee, 
2017; VMHA, 2020; Kieu & Le, 2021). Hydroelectric 
projects have also contributed to unpredictable Ba 
River flows by releasing floodwaters during the rainy 
season, causing extensive flooding (Nguyen, 2014). 

 

 

 
Figure 8. (a) Calibration results and (b) 

Validation results of MIKE SHE model 

 
Figure 9. Average annual groundwater flow simulated from the MIKE SHE model  

(a) 

(b) 
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3.3 The correlation between groundwater 
flow and LULC changes 

 
According to Table 3 and Figure 10. The MLR 

model, which was developed using Python, 
accurately predicts the relationship between LULC 
changes and groundwater flow (Q). The model has a 
training R² value of 0.914 and a prediction R² value 
of 0.912. Its predictive performance on withheld data 
is outstanding, with an R² value of 0.808 and low 
errors. Validation on data from 2019-2022 yielded an 
R² of 0.832, confirming its efficacy in capturing the 
effects of shifting LULC patterns on groundwater 
flow. The model's dependable generalization 
potential is evident in the regression analysis results. 

However, the positive coefficients of LULC 
classes mentioned in Table 3 from the MLR model 
contradicted the hypothesis that an increase in built-
up, bare soil, and agricultural lands leads to a decrease 
in groundwater recharge. To examine this in more 
detail, we calculated the coefficients between each 
LULC class and Q. As shown in Figure 11, there is a 
clear relationship between each LULC class and Q. 
Bare soil, built-up areas, cropland, and wetlands have 
negative coefficients of -0.0058, -0.01289, -0.0034, 
and -0.01235, respectively. On the other hand, forest 
(0.0025) and rangeland (0.00076) show a positive 
trend with Q. These findings led to the hypothesis that 
multicollinearity, a statistical concept where  two or 
more independent variables display significant 
correlation. Multicollinearity can increase the 
variance of the estimated regression coefficients, 
making it difficult to isolate the impact of individual 
LULC classes on Q.  

To address this, we used the Variance Inflation 
Factor (VIF), as shown in equation 17, to measure the 
extent of multicollinearity. High VIF values would 
confirm the presence of multicollinearity in the 
model, which could explain the unexpected positive 
coefficients for certain LULC classes. Accurately 
interpreting how land use and land cover changes 
affect groundwater recharge is crucial for refining the 
model. 

VIFi = 𝟏𝟏
𝟏𝟏−𝑹𝑹𝒊𝒊

𝟐𝟐 (9)  

where Ri
2 is the coefficient of determination of 

regression of an independent variable against all other 
variables. 

Table 2 shows that the VIF results show a 
strong correlation among land use types with a high 
level of multicollinearity, with the highest value 
being 10.34 (built-up class). This affects the 
interpretability of a regression model that includes 
these variables, as it would be difficult to isolate the 
effect of any one variable on the dependent variable 

(Q). The presence of multicollinearity in the data 
could be attributed to the fact that these land use types 
are derived from the same geographical area. It is 
logical to assume that they would display a high 
correlation since a decrease in one type might lead to 
an increase in others to compensate. This 
phenomenon results in multicollinearity.  

 
Table 2. VIF results 

No. LULC class R² VIF 
1 Bare soil 0.88 8.56 
2 Built-up 0.90 10.34 
3 Cropland 0.89 9.47 
4 Forest 0.74 3.88 
5 Rangeland 0.87 7.51 
6 Wetland 0.86 6.95 

 
To address multicollinearity, LULC classes 

were combined (James et al., 2013; Harrell, 2015). 
and ridge regression (Hoerl & Kennard, 1970; 
Kidwell & Brown, 1982; Bager et al., 2017) was used.  

Specifically, non-vegetation classes (bare soil, 
built-up, and wetland) were grouped, The remaining 
classifications were retained to represent the various 
types of vegetation cover (cropland, forest, 
rangeland). Therefore, the number of LULC classes 
has been reduced to four categories: non-vegetation, 
cropland, forest, and rangeland.  

New LULC classes were used as independent 
variables in a ridge regression to analyze Q, 
addressing multicollinearity, which inflates variances 
in the least squares estimates (Hoerl & Kennard, 
1970; Kidwell & Brown, 1982; Bager et al., 2017). 
Ridge regression corrects this by adding a bias factor, 
alpha, to reduce overfitting (Bager et al., 2017). 
Alpha was optimized using K-Fold cross-validation 
within a range of 1 to 100, selecting the one 
minimizing MSE on the validation set (Scikit-learn, 
2023). The model was trained on an 80% and tested 
20% random subset of data from 1988-2018, and 
validated with 2019-2022 in-situ data. 

Table 4 and Figure 12 displays the ridge 
regression model's results, indicating the relationship 
between LULC classes and groundwater flow (Q). 
The optimal alpha for the model was set at 74, fine-
tuning its complexity (Scikit-learn, 2023). 
Performance metrics for the model on the training set 
included an R² of 0.908, MSE of 6.48e-05, and MAE 
of 0.0167, while the test set showed similar R², MSE, 
and MAE values of 0.904, 6.77e-05, and 0.0069, 
respectively For the forecasting module, the model 
attained an R² score of 0.877, an MSE of 0.00524, and 
an MAE of 3.30e-05. These results imply that the 
model displays a high degree of predictive precision, 
accounting for roughly 87.7% of the variation in 
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groundwater movement for in-situ data. 
The ridg regression model's coefficients for 

non-vegetation and cropland were negative (-0.00211 
and -0.00058), suggesting these classes decrease 
groundwater flow, possibly due to reduced infiltration 
(Wakode et al., 2018; Siddik et al., 2022b). This may 
be attributed to various factors, such as irrigating 
practices that decrease the amount of water 
penetrating the ground, or the cultivation of certain 
crops that diminish the soil's permeability (Foster et 
al., 2018; Mukherjee et al., 2022). In contrast, forest 
and rangeland had positive coefficients (0.00192 and 
0.001176), implying their increase leads to more 
groundwater flow, attributable to better water 
infiltration and storage (Ilstedt et al., 2016; Onyango 
et al., 2016; Owuor et al., 2016; Wilcox et al., 2017; 
Shannon et al., 2019; Zhang et al., 2023). Thus, the 
final regression equation for Q prediction from LULC 
areas is expressed as Equation 18. 

Qpred = -0.64785 - 0.0021 × X1 - 0.00058 × 
X2 + 0.00192 × X3 + 0.001176 × X4  

(10)  

where Qpred is predicted groundwater flow. X1 is 
Non-vegetation (LULC feature 1); X2 is Cropland 
(LULC feature 2); X3 is Forest (LULC feature 3); X4 
is Rangeland (LULC feature 4). 

The coefficient for each LULC class has a 
small decimal compared to the intercepts (-0.64), 
which can be interpreted in several ways. Firstly, the 
areas of LULC classes are likely measured in large 
units, and even small changes in these units can 

represent substantial physical areas. Secondly, as a 
ridge regression model, it is designed to handle 
multicollinearity among predictors by imposing a 
penalty on the size of the coefficients. This can shrink 
the coefficients towards zero, particularly if the 
model is trying to manage overfitting or if the 
predictors are highly correlated. Lastly, the small 
coefficients indicate that the contribution of each 
LULC class to the variation in groundwater flow is 
less significant than the baseline flow determined by 
the intercept, which may be heavily influenced by 
other factors such as climate, soil properties, 
topography, or other hydrological factors not 
captured by LULC alone.  

In summary, the merging of LULC classes and 
the application of ridge regression have provided a 
viable approach to address the issue of 
multicollinearity and assist in understanding the 
relationship between land use patterns and 
groundwater flow. 

 
4. CONCLUSIONS 
 
This study applied a process-based hydrological 

modelling and integrated remote sensing methodology 
to measure the correlations between changes in LULC 
and groundwater flow trends in the Al Ba pilot region of 
Gia Lai Province, Vietnam, over the period 1988-2022. 
High-resolution satellite imagery from the LST5, LST8 
and S2A missions was used to generate detailed LULC 

 
Table 3. Evaluations of MLR results 

Evaluations for training model: Evaluations for prediction model: 
R² score 0.914 R² score 0.912 Class Coefficient 
Intercept  -4.534 Intercept  -4.565 Bare soil 0.129 

Evaluations of the testing model: Validation for prediction model: Built-up 0.177 
R² score 0.808 R² score 0.832 Cropland 0.131 

MAE 0.013 MAE 0.007 Forest 0.136 
MSE 0.0002 MSE 8.51E-05 Rangeland 0.132 

RMSE 0.014 RMSE 0.009 Wetland 0.121 
 

 

 

(a) (b) 
Figure 10. (a) Performance of training and testing models; (b) Performance of prediction models of MLR 
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Figure 11. Correlation between each LULC class and groundwater flow Q 

 
Table 4. Evaluation of Ridge Regression Results 

Model R² score MAE MSE 
Train model 0.908 6.48E-05 1.67E-02 
Test model 0.904 6.77E-05 0.006936 

Prediction model 0.877 0.005236 3.30E-05 
LULC class Coefficient LULC class Coefficient 

Non-vegetation -0.00211 Rangeland 0.001176 
Cropland -0.00058 Intercept 0.640785 

Forest 0.00192 Best alpha 74 
 

 

 

(a) (b) 
Figure 12. (a) Performance of training and testing models; (b) Performance of prediction models of ridge regression 

 
maps. The maps depict changes in LULC that have 
occurred over the years, including a decrease in forest 
cover and an increase in bare soil, cropland and urban 
infrastructure. The MIKE SHE hydrological model was 
developed to simulate historical groundwater flow 
trends. However, the calibration and validation of the 
model were limited due to the limited availability of 
measured groundwater flow data. 

The study then analysed the effects of LULC 
changes on groundwater flow using the MLR model. 
Despite the high R² scores obtained by the MLR model 
for both training and prediction, it indicated a positive 
correlation between LULC classes and groundwater 
flow, which contradicts previous findings. These 
anomalies in the MLR results led to the identification 
of multicollinearity problems among the LULC 
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variables, evidenced by VIF values exceeding the 
accepted threshold.  

To address these issues, we employed grouping 
method and ridge regression model. This involved 
combining certain LULC classes into a 'non-
vegetation' category and introducing a bias factor, 
alpha, to manage variance. Cross-validation was used 
to identify the optimal alpha that corrected the 
coefficients of the MLR. This revealed a more intricate 
relationship, where non-vegetative cover, such as 
urban and bare soil, had a negative impact on 
groundwater flow, while vegetation, such as forests 
and rangeland, had a positive impact. The Ridge 
Regression analysis provided a refined perspective on 
the effects of LULC on groundwater and proved to be 
an essential tool for strategic environmental 
management and conservation efforts. 

In conclusion, this comprehensive analysis, 
which incorporates both remote sensing and process-
driven hydrological modeling, confirms the significant 
cumulative effects of human-induced LULC in 
altering the recharge and flow processes of 
groundwater systems. It is crucial to evaluate these 
dynamic LULC impacts, which act as a significant 
non-point source that determines the sustainability of 
aquifers to regulate the use of aquifers in the Central 
Highlands region under varying environmental 
conditions. Hence, establishing efficient groundwater 
management tactics necessitates a clear understanding 
of LULC's causal connections and its impact on the 
aquifer. 
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