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Abstract: Satellite imagery provides an advanced and cost-effective way to emphasize the lithological 
information of any poorly mapped area. In this study, a lithological identification method, based on the 
support vector machine (SVM) classifying algorithm, is proposed to discriminate the widely exposed 
lithological features around Wadi Atalla area, Central Eastern Desert of Egypt. The SVM classifier has 
been applied to a series of datasets derived from the Advanced Space-borne Thermal Emission and 
Reflection Radiometer (ASTER) imagery with an ASTER-derived Digital Elevation Model (DEM) in 
order to find the best set of data input for the optimal classification results. Combinations of various input 
datasets including; the Visible Near Infrared (VNIR) and Shortwave Infrared (SWIR) of the ASTER 
bands as well as some of its derivatives e.g. Principal Component Analysis (PCA), Independent 
Component Analysis (ICA), the stacking of both PCA and ICA data (PC/IC-Stack) as well as the ASTER 
generated DEM are tested for best classification accuracy. A combination of the ASTER-(PCA/ICA and 
DEM stack) data input provided the highest overall classification accuracy of 95% for the independently 
validated samples of the lithological classes using the SVM classifier. Results indicate that this particular 
dataset input can help producing a good lithological distribution map for any remote area that have some 
background information about its lithology. This new proposed method successfully differentiated 
between ophiolitic assemblage, highly deformed rocks of Meatiq group, intrusive rocks and Hammamat 
molasse sediments in the study area. 
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1. INTRODUCTION 
 

Development in Satellite image processing 
techniques has reached advanced levels in 
lithological mapping as well as identifying mineral 
deposits (Abrams et al., 1983; Abrams & Hook, 
1995). The Advanced Space borne Thermal 
Emission and Reflection radiometer (ASTER) is one 
of the most widely used sensors in that purpose. It 
has three separate instrument subsystems (Table 1) 
that makes the ASTER data of high spatial, spectral 
and radiometric resolutions (Yamaguchi et al., 
1998).  

One of the main principal applications of 
remote sensing data is to create maps of identifiable 
ground features through assigning image pixels to 

distinguishable real-world classes using an 
automated process, the process that is called “image 
classification”. Using a suitable classification 
technique is significant in determining the quality of 
the classification results. Geological studies using 
multi-spectral remote sensing imagery is usually 
based on the differences in both physical and 
chemical properties of each rock type (Yu, et al., 
2012). The need of efficient image classifier to 
classify remote sensing images with high accuracy is 
essential (Perumal & Bhaskaran, 2011). This is why 
many extensive works had been done relevantly to 
this issue (Ninomiya & Fu, 2010; Li, et al., 2011; 
Salati, et al., 2011; James & Daniel, 2002; Lu, & 
Weng, 2007). Boser et al., (1992) was the first to 
introduce the support vector machine (SVM) 
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classifier. Comparing the SVM with the mostly and 
widely used, maximum likelihood classifier (MLC), 
showed that the SVM did provide higher accuracy in 
terms of the independently validated samples (Yu, et 
al., 2012; Mondal et al., 2012). Another important 
factor that is been widely used in the lithological 
discrimination processes is the elevation data.  

Topographic informations have been widely 
used for lithological mapping, either by themselves 
(e.g. Barnett, 2004) or in combination with spectral 
data (Yu, et al., 2012). Different rock units have 
differently topographical expressions, which 
depends on their relative susceptibility to 
weathering. Yu, et al., (2012) implemented a spatial 
image processing mining for lithological 
classification using SVM. In their procedure, the 
SVM algorithm was applied to an automated 
lithological classification using ASTER imagery, 
ASTER-derived digital elevation model (DEM) in 
order to determine the optimal inputs that provide 
the highest classification accuracy. 
 
Table 1.Characteristics of ASTER Satellite data 
 

Subsys
tems Bands Spectral 

range(µm) 

Spatial 
Resolution 

(m) 

 
VNIR 

Band1 
Band2 

Band3NBand3
B 

0.52-0.60 
0.63-0.69 
0.78-0.86 
1.60-1.70 
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SWIR 

Band5 
Band6 
Band7 
Band8 
Band9 

2.145-2.185 
2.185-2.225 
2.235-2.285 
2.295-2.365 
2.360-2.430 

 
 
 

30 
 

 
TIR 

Band10 
Band11 
Band12 
Band13 
Band14 

8.125-8.475 
8.475-8.825 
8.925-9.275 
10.25-10.95 
10.95-11.65 

 
 

90 

 
The aim of this study is to develop a 

classification method for remote sensing ASTER 
satellite imagery using SVM with Radial base 
function (RBF) and evaluate the accuracy of 
classification using various combinations of 
parameters of RBF in order to get the best 
lithological identification at Wadi Atalla area. The 
suitability of combining ASTER derivatives for 
lithological classification using SVM is evaluated. In 
addition, a full comparison of the different data 
inputs to identify the most discriminatory data layers 
for lithological classification at Wadi Atalla area is 
applied. Varieties of image processing techniques 
are applied to different datasets to generate the most 

enhanced lithological information of the study area. 
The performance of different SVMs (with different 
layers) is evaluated by classification accuracy on 
independent validation samples as well as the 
similarity with the field work derived, similarity or 
non- similarity with the published lithological map. 
 

2. GEOLOGIC SETTING OF THE STUDY 
AREA 

 
The study area as shown in (Fig. 1a) is located 

along the fold and thrust belt of the Nubian Shield as 
part of the Neoproterozoic basement rocks of the 
Central Eastern Desert (CED) of Egypt forming very 
rugged terrains. 

The ophiolitic sequence of the area is 
composed mainly of ultramafic rocks (serpentines), 
mafic plutonic rocks (meta gabbro) and meta 
volcanic (met basalts) (El-Gaby et al., 1984; Habib 
et al., 1985; Hassan & Hashad, 1990; El-Sayed et 
al., 1999; Abd El-Rahman, et al., 2009). The best 
exposures of these ophiolitic units occur in the 
Fawakhir area, which is located between the Meatiq 
gneissic dome to the east and the Hamammat 
sedimentary rocks to the west (Nasseef et al., 1980) 
along the Qift-Qusier road. Highly deformed meta- 
sedimentary sequences including metapelites and 
metasammites and subordinate amphibolites, which 
suffered amphibolite-facies metamorphic conditions 
(Neumayr et al., 1995), are also recorded with 
amphibolite being dispersed in the sheared 
sedimentary matrix (Ries et al., 1983; El-Gaby et al., 
1984; Fowler & Osman, 2001).  

The Ophiolite lies between the Hammamat 
conglomerates to the west and the Meatiq Dome to 
the east. The western contact between the ophiolite 
suite and the Hammamat conglomerates is an 
easterly dipping thrust zone, while its eastern contact 
with the Meatiq rocks is defined by a zone of 
tectonic melange, mylonitised rocks and highly 
deformed gabbro. The contacts between the 
ultramafics and adjacent rocks are sharp and distinct 
as shown in (Fig. 2). 

The basal contact between the serpentinite and 
the underlying mélange rocks is sharp and marked 
by a deep thrust fault trending north-northwest-
south-southeast (El-Sayed et al., 1999) and a 
relatively narrow band of dark green schistose 
amphibolite is located between the ultramafic and 
the mélange zone (Hassanen, 1985). Metagabbros 
(located at the mouth of Wadi Atalla) constitute a 
major part of the ophiolite suite and have suffered 
regional metamorphism up to green schist-facies.  
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Figure 1. (a) Location map of the study area. 
(b)Lithological map of the study area (modified after 
EGSMA, 1992). 
 

Two ophiolitic metagabbro bodies display 
layering on a regional scale. The contact with the 
serpentinites is highly sheared and show development 
of schistose amphibolite rocks. Small irregular bodies 
of basic metavolcanics are overly the 
ultramafic/mafic rocks (El-Sayed et al., 1999). The 
contact between the metavolcanic and ultramafic 
rocks is fairly sharp, although small fragments of the 
basic metavolcanics occur in the ultramafic 
serpentinite. Low-grade regional metamorphism, up 
to greenschist-facies, has affected the volcanic rocks. 
The post-ophiolite granitic pluton occupies the 
western central part of the mapped area, and intrudes 
both the ultramafic and metagabbro rocks (Harraz & 

Ashmawy, 1994; El-Sayed et al., 1999; Fowler, 
2001). The granitic pluton is characterised by the 
presence of numerous rounded to elliptical xenoliths 
with different sizes, which have sharp contacts with 
the enveloped granitic rocks. 

 

 
Figure 2. (a) Talc carbonate rocks (tc) emplaced within 
serpentinites (sr). (b) Green conglomerate in Hammamat 
sediments. (c) General view of the southern side of Um Had 
granitic pluton. (d) Sheared Meta Volcanic, Wadi Atalla. 
 

3. MATERIAL AND METHODS 
 
Eight steps of a methodological process have 

been applied as followings; 1) Identify the study 
area to determine area of interest (AOI) from remote 
sensing satellite imagery and gathering the required 
SWIR and VNIR ASTER bands for it, 2) Generate 
ASTER DEM of the AOI of study area, 3) Associate 
the DEM layer with the nine ASTER layers, 4) 
image segmentation for partitioning a digital image 
into multiple segments (sets of pixels) or setting 
region of interest (ROI), 5) Features extraction to 
transform the input image into a set of features using 
PCA and ICA algorithms, 6) Image classification for 
sorting pixels into a finite number of individual 
classes, or categories of data, based on their data file 
values. If a pixel satisfies a certain set of criteria, the 
pixel is assigned to the class that corresponds to 
those criteria using SVM with RBF functions, 7) 
Apply post classification using siev, clumb and 
majority windows techniques, 8) Accuracy 
assessments calculation of various combination of 
the data sets, as shown in (Fig. 3). 

 
3.1. ASTER Data 
 
In the present study, the ASTER Level 1B 

image data acquired on June, 2003 is used. The 
ASTER data is in terms of radiance at sensor data 
with radiometric and geometric corrections applied. 
A spectral stacking of the VNIR and SWIR 
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(resampled to 15 x15 m per pixel) absorption 
bands, covering the study area, are processed and 
analyzed  using ERDAS Imagine 2013 and Arc GIS 
10.1 softwares. Fieldwork is carried out to mainly 
check the occurrence, spatial distribution of the 
exposed rock types where samples are collected for 
further analysis.  

 
3.2. Digital Elevation Model (DEM) 
 
Topographic attributes have been widely used 

for lithological mapping, either by themselves 
(Barnett, 2004) or in combination with spectral data. 
A Digital Elevation Model (DEM) is a regularly 
spaced raster grid of elevation values of a terrain. 

 
Figure 3. Flowchart shows the applied methodological 
processes 
 

In remote sensing, DEMs are used in 
mapping, ortho-rectification, and land classification. 
Using ASTER band 3N (Nadir view) and 3B 
(Backward view) as stereo pair for DEM generation. 
Digital elevation model are the most suitable tool for 
geological structure and rock units discrimination. 
Combination between ASTER satellite images and 
DEM show relationship between topography and 
geology (Cries et al., 1995). Rock types have 
topographical terms that depend on their relative 
susceptibility to weathering. Slope defined as the 
rate of change of elevation each grid cell in the 
DEM while the curvature describes how much a 
surface is curved at a particular point in the 
landscape. Tightly folded terrain has large curvature 
values, while flat terrain has zero curvature (Roberts, 
2001). In this paper, topographical slope and 
curvature are calculated from the ASTER DEM 
(resampled to 15x15 m per pixel). ENVI 
Topographic Modeling function was used to produce 
slope and curvature in order to improve the 

geological information and increase overall accuracy 
of the classification results.  

 
3.3. Principal and independent Component 
Analysis (PCA and ICA) 
 
Principal Component Analysis (PCA) involves 

a mathematical procedure that transforms a number of 
(possibly) correlated variables into a (smaller) 
number of uncorrelated variables called principal 
components. PCA-based spectral enhancements 
have been successfully used for geological 
applications and used to enhance the 
classification results While, the Independent 
Components (IC) analysis transforms an input dataset 
into a new dataset containing new bands comprised of 
a linear combination of the input bands. IC transforms 
a set of mixed, random signals into components that 
are mutually independent. The benefit is that IC can 
distinguish features of interest even when they occupy 
only a small portion of the pixels in the image. ICA 
is a type of spectral unmixing method that does 
not require a priori knowledge of targeted surface 
materials, e.g. rocks (Gómez et al., 2007). For 
comparing lithological information discrimination 
performance the two image enhancement processing 
algorithms (PCA) and (ICA) were applied to 9 
ASTER bands SWIR and VNIR. The combination 
between PCA and ICA features (18 new layers) were 
applied and combined with 9 ASTER bands 
(VNIR and SWIR) as well as the DEM (slope 
and curvature) in order to  improve the 
performance of classification results, for all the used 
numbers of components  instead of using PCA or ICA 
separately (Mercier & Lennon, 2003). 
 

3.4. Support vector machine (SVM) 
 
Kernel-based techniques (i.e. SVM, Bayes 

point machine, kernel principal component analysis, 
and Gaussian processes) represent a major 
development in Machine Learning (ML) algorithms. 
SVMs were first suggested for supervised 
classification and have recently become an area of 
intense research owing to developments in the 
techniques and theory coupled with extensions to 
regression and density estimation (Burges, 1998). 
SVM are a group of supervised learning methods 
that can be applied to classification or regression. 
SVM is considered as one of the standard tools for 
ML and data mining. It is applied on many real 
applications as text categorization, hand-written 
character recognition, image classification, bio-
sequences analysis, etc. It employs kernel to map the 



19 

input data into some much higher dimensional 
feature space implicitly in which data becomes 
linear separable. The SVM approach seeks to find 
the optimal separating hyper plane between classes 
by focusing on the training cases that are placed at 
the edge of the class descriptors. These training 
cases are called support vectors. Training cases other 
than support vectors are discarded. This way, not 
only is an optimal hyper plane fitted, but also less 
training samples are effectively used; thus high 
classification accuracy is achieved with small 
training sets (Perumal & Bhaskaran, 2011). 

Given a training dataset with n samples 
(x1, y1),   (x2, y2), … , (xn, yn)   where xi is feature 
vector in a v-dimensional feature space and with 
labels yi ∈ −1, 1 belonging to either of two linearly 
separable classes C1 and C2. Geometrically, the SVM 
modeling algorithm finds an optimal hyperplane with 
the maximal margin to separate two classes, which 
requires solving the optimization problem; 
 

       Maximize  �∝i

n

i=1

−
1
2
�∝i∝j yiyj

n

j =1

 . K�xi , xj� 
(1) 

Subject − to ∶   �∝i yi

n

i=1

, 0 ≤∝i≤ C   
(2) 

Where ∝i is the weight assigned to training 
sample xi.If > 0, xi is called support Vector C is a 
regulation parameter used to trade-off the training 
accuracy and the model complexity K is a kernel 
function, which is used to measure the similarity 
between two samples. The SVM algorithm provides 
a choice of four kernel types: Linear, Polynomial, 
Radial Basis Function, and Sigmoid. These kernel 
functions are defined as: 
Linear Kernel function 

Polynomial kernel function: 

Radial Basis kernel function (RBF):  

         K�xi , xj� = e�−γ�xi−xj�
2� , γ > 0. (5) 

Sigmoid kernel function: 

K(xi, xj) = tan�γxiTxj + r� (6) 

Several kernel functions help the SVM obtain the 
optimal solution. The most frequently used such 
kernel functions are the polynomial, sigmoid and 
radial basis kernel function (RBF). The RBF is 
generally applied most frequently, because it can 

classify high-dimensional data, unlike a linear kernel 
function. Additionally, the RBF has fewer 
parameters to set than a polynomial kernel. 

Parameter C represents the cost of the penalty. 
The choice of value for C influences on the 
classification outcome. If C is too large, then the 
classification accuracy rate is very high in the training 
phase, but very low in the testing phase. Parameter γ 
has a much greater influence on classification 
outcomes than C, because its value affects the 
partitioning outcome in the feature space (Ding, 
2011). Large value for parameter γ results in over-
fitting, while a small value leads to under-fitting. Both 
parameters, the γ and C, depend on the data range and 
distribution and they differ from one classification 
problem to another. A common strategy to search for 
adequate values for g and C is a two-dimensional grid 
search with internal validation. This strategy is 
implemented in image SVM in EnMap-Box tool 
(Linden et al., 2010). Grid search is the most common 
method to determine appropriate values for C and γ. 
Values for parameters C and γ that lead to the highest 
classification accuracy rate in this interval can be 
found by setting appropriate values for the upper and 
lower bounds. The optimal value of C and γ in this 
study, as (100, 100) in the same order for ASTER-
DEM (slope, curvature)-PCA-ICA data layer. 
 

4. APPLICATION OF SVM TO THE 
STUDY AREA 
 
4.1. Input data 
 
For optimized lithological classification of 

Wadi Atalla area from remote sensing data, we 
experimented by training a series of SVMs using 
various combinations of input data selected from 
among 20 data layers including the original 9 
ASTER bands and 11 derivative data layers 
extracted from the ASTER and DEM data. The 
derivative data sets contain enhanced spectral and 
topographic responses of various lithological units to 
provide better classification accuracy than the 
original data sets. The target classes for the SVM 
classification included the sixteen lithological units 
listed in (Table 2). 

 
4.2. Training procedure and classification 
data sets 
 
The geological map figure 1a is a helpful tool 

to select the locations of training sets for different 
lithological classes.  

A suitable number of training pixels were 
selected for each class, depending on its area extent. 

K�xi , xj� = xiTxj  (3) 

K�xi , xj�  = �γxiTxj + r�
d, γ > 0. (4) 
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A total of 19470 training samples of the exposed 
lithological units (e.g. serpentine-talc carbonate, 
metagabbro, metavolcanic and metapasmmite) have 
been detected. Training involved determining the 
optimal values of the SVM parameters, namely, the 
penalty term "c" and the basis width of the kernel 
"gamma", which yield the best classification results 
for the independent validation samples. After 
identifying the training sets, the SVMs have been 
applied to classify features extracted from all of the 
pixel locations within different input data set. A total 
of 19470 training samples were selected and 
randomly divided into two parts; first part (75% of 
the data) was used for training the SVMs and the 
second part (25%) was used as an independent 
validation dataset also called test data set for 
evaluating the classification performance of the 
trained SVMs that shown in (Table 2) 

 
Table 2. Training and Independent validation data for 

SVM 

Class Name 
( lithological unit) 

No. of samples 

Training Independent 
validation (Test) 

Wadi Deposits Qp 1547 516 
Monzogranite /alkai 
feldspar granite Gk 1292 431 

Amphibolite schist Ma 1648 947 
Hammamat sediments 

(greywackes & 
conglomerates), Ha 

2921 549 

Sericite muscovite garnet 
schist Msm 152 51 

Acidic to intermediate 
metavolcanics Vi-b 675 225 

Atallah felsite Af 841 280 
Ferruginous sandstone 

KuNT 710 237 

Monzodiorite Gd 545 182 
Gabbro-diorite Mgb 407 136 
Intermediate to basic 

metavolcanics Vb 844 281 

Schistose metavolcanics 
Mvtac 323 108 

Serpentinite talc -
carbonate rocks Os 853 284 

Acidic metavolcanic tuffs 
Vp-c 377 221 

Ophiolitic metagabbro 
Ohgb 809 126 

Metapsammite 
Mqf 663 270 

 
4.3. Accuracy Assessment 

 
The overall accuracy is calculated as the total 

number of correctly classified pixels divided by the 

total number of test pixels. The pixels classified 
correctly are found along the diagonal of the 
confusion matrix (Table 3) which lists the number of 
pixels that were classified into the correct ground 
truth class. The kappa coefficient (K) is another 
measure of the accuracy of the classification that 
takes into account the off-diagonal elements as well. 
It ranges from –1 (maximum disagreement) to 1 
(best agreement), while 0 means that the agreement 
between reference and classification data is the same 
that can be obtained by chance. The mathematical 
equation for calculating kappa coefficient is given 
by K= (N*A-B) / N2-B 

Where N is the total number of pixels, A is 
the number of correctly classified pixels (Sum of 
diagonal elements in the confusion  matrix), B is the 
sum of product of row and column total in confusion 
matrix. 
 

5. RESULTS AND DISCUSSIONS 
 

Lithological classification of remote sensing 
data requires large number of datasets where each data 
set contains some relevant information on different 
rock types at a pixel-level. We evaluate the accuracy of 
SVM through changing parameters gamma and 
penalty of Radial Base Function (RBF) for all sixteen 
lithological classes which represent the widely exposed 
rock units at Wadi Atalla area. The obtained overall 
accuracy of all lithological units using ENVI software, 
confusion matrix and Kappa Coefficient of SVM is 
calculated. The combination of the nine ASTER bands 
(SWIR+VNIR), DEM (slope and curvature), 
Independent Component (IC) and Principal 
Component (PC) layers give the highest classification 
accuracy about 95%. Using quantitative analysis, the 
accuracy assessment focused on the comparison of 
classifications made with and without the DEM Layer. 
An error matrix (confusion matrix) as shown in (Table 
3) was generated for each dataset and used to derive 
the overall accuracy and an estimate of Kappa 
coefficient referred to KHAT (Getman, et al., 2008). 
Overall accuracy is the most commonly used estimate 
of accuracy in satellite image classification. 
Calculations of the producer’s and user’s accuracy 
were included to distinguish the contributions for 
individual lithology classes to the overall accuracy of 
the classification results. Average accuracy (producer’s 
and user’s accuracy) is calculated from different data 
set layers and listed in (Table 4) The result shows that 
the use of all derivatives layers performed better, 
which are useful for lithological discrimination. 

The average accuracy comparisons of each 
rock units in different SVMs are listed in (Table 4) 
and (Fig. 4). A comparison of the performance of 
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various SVMs for different classes indicates that the 
ASTER and ASTER-derived data sets are most 
useful in classification of the most exposed rock 
units, In particular, acidic metavolcanic tuffs, basic 
to intermediate metavolcanics, ferruginous 
sandstone, Hammamat sediments, amphibolite 
schist, serpentinite, talc-carbonate, ophiolitic 
metagabbro and metapasmmite. ASTER (VNIR-
SWIR)-DEM-PC-IC SVM has better overall 
accuracy than ASTER-DEM (Table 5). ASTER 
(VNIR-SWIR)-DEM-PC-IC SVM has better overall 
accuracy than ASTER-DEM (Table 5). The ASTER 
DEM ICA has the best overall accuracy for Sericite 
muscovite garnet schist, monzodiorite and 
metapasmmite. ASTER-DEM SVM and ASTER 
(VNIR-SWIR)-DEM-PC-IC SVM also have equal 
accuracy for some classes (e.g. amphipolite schist, 

serpentinite talc-carbonate rocks and ophiolitic 
metagabbro). Also, sericite muscovite garnet schist 
has the worst overall accuracy in all the grouped 
layers ranging from 63 % to 75 % (Table 4). 
 

5.1. Overall classification results 
 

The overall classification accuracies of 
different data sets for all sixteen classes are listed in 
(Table 5). All three ASTER-derived products (PC, 
IC and combination of PC and IC) are compared. 
The use of the ASTER-derived products, PCA 
individually or combined with DEM provide higher 
classification accuracies 93.1% and 95% 
respectively than directly using the original ASTER 
data (Table 5).  

 
Table 3. Confusion matrix calculated for the exposed lithological units in the study area using ASTER DEM –PC-IC- 

SVM, (see table 2 for lithological abbreviations). 
Reference Data Total 

Class QP Gk Ha Ma Msm Vi-b Af KuNT Gd Mgb Vb Mvtac Os Vp-c Ohgb Mqf 
QP 521 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 521 
Gk 0 391 12 1 1 0 5 0 22 7 0 0 0 2 0 0 441 
Ha 0 5 903 3 20 0 30 2 0 1 0 0 0 6 0 0 970 
Ma 0 0 0 558 0 4 0 0 0 0 0 3 0 0 0 0 565 

Msm 0 0 0 0 23 0 0 0 0 0 0 0 0 0 0 0 23 
Vi-b 0 0 0 4 0 201 0 0 0 0 5 0 0 0 2 0 212 
Af 0 3 18 0 0 0 242 0 1 3 0 0 0 1 0 0 268 

KuNT 0 0 1 0 6 0 0 256 1 0 0 0 0 0 0 0 264 
Gd 0 17 2 0 0 0 1 1 179 0 0 0 0 0 0 0 200 

Mgb 0 7 0 0 0 0 3 0 0 109 0 0 0 0 0 0 119 
Vb 0 0 0 0 0 7 0 0 0 0 266 3 0 0 4 0 280 

Mvtac 0 0 0 0 0 0 0 0 0 0 6 93 1 0 0 0 100 
Os 0 0 0 0 0 0 0 0 0 0 0 0 281 0 0 0 281 

Vp-c 0 0 4 0 0 0 2 0 0 0 0 0 3 213 0 0 222 
Ohgb 0 0 0 0 0 1 0 0 0 0 4 0 0 0 122 0 127 
Mqf 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 271 275 

 521 423 940 566 50 213 283 259 203 120 281 102 286 222 128 271 4868 
 

Table 4. Average (producer’s and user’s accuracy) calculated for the exposed lithological units in the study area using 
different datasets. 

Class Name / lithological unit ASTER 
(SWIR-VNIR) ASTER -DEM DEM-PCA ASTER 

DEM-ICA 

ASTER 
DEM-PCA-

ICA 
Qp 99 99.5 99 99 99.9 
Gk 88 87.8 89 90 90.5 
Ma 98.5 98.6 98.6 97.5 98.6 
Ha 93.3 93.4 93.4 94 94.5 

Msm 64.2 66.7 69.7 75 63 
VI-b 93.5 93.5 95 93.7 94.5 
Af 86 85.9 86 87.3 87.8 

KuNT 96.4 97 97 97.4 97.8 
Gd 87 86.7 87.7 90.5 88.8 

Mgb 86 86 85.2 85.7 91.2 
Vb 93 93.2 93.3 93.2 94.8 

Mvtac 90 92 89 89.4 90 
Os 99.4 99.4 99.4 99.4 99.4 

Vp-c 93.7 94.8 94.2 94.9 96 
Ohgb 98.3 99 99 98.3 99 
Mqf 95.4 92.6 92.3 96.2 95.2 



22 

 
Figure 4. Lithological classification result of the exposed rock units using SVM Classifier (a) ASTER (SWIR-VNIR)-
SVM, (b) ASTER -DEM-SVM , (c) ASTER- DEM -PC-SVM, (d) ASTER-DEM-IC-SVM and (e) ASTER-DEM-PC-
IC-SVM, (f) Colored scale of the extracted classified images including figs (a-e). 
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Figure 5. The post-processing result of the ASTER-DEM-PC-IC-SVM, (a) 3×3 pixel majority filter. (b) 5×5 pixel 
majority filter. (c) 7×7 pixel majority filter, (d) 9×9 pixel majority filter.

 
The use of combined datasets produced better 

results than the use of a single dataset and the 
highest classification accuracy for the independent 
validation dataset is achieved when using the 

combination of ASTER DEM+PCA+ICA SVM. The 
integrative SVMs (ASTER+DEM SVM and PCA, 
ICA+DEM) perform slightly better than all other 
SVMs for all classes. The SVM proposed method 

Table 5. Overall classification accuracy calculated for various combinations of data sets using SVMs and penalty 
parameter, gamma for each data set. 

 
Data Set Name for SVM 

classifier 
No. of Data 

Layers 
Penalty 

parameter (c ) 
Gamma 

(g) 
Overall Accuracy Kappa Coefficient 

ASTER (VNIR+SWIR) 9 100 100 93.1% 0.93 
ASTER (VNIR+SWIR)+DEM 

(slope and curvature) 
11 100 100 94% 

 
0.93 

ASTERDEM (slope and 
curvature) -PCA 

11 100 1000 94.1% 
 

0.93 

ASTER DEM (slope and 
curvature)-ICA- 

11 10 100 94.8% 0.94 

ASTER DEM (slope and 
curvature)-PCA-ICA-  

20 100 100 95% 0.95 
 



24 

produce a good distribution of the lithological units 
for the widely exposed rock units and the resulted 
classified image (Fig. 4) successfully emphasizes the 
spatial distribution of the lithological units around 
Wadi Attalah area. The produced image show 
differences in the distribution of some rock units and 
contacts between them compared to the published 
geological map of EGSMA (1992) (Fig. 1b) which 
has been verified by field work. The Image 
processing of the remote sensing data as proposed in 
the present study proves its high capability in 
detecting and emphasizing the spatial distribution of 
the lithological units in other geologically similar 
arid regions in the Arabian-Nubian Shield (ANS) 
and worldwide. 

 
5.2. Post-processing procedures 
 
Some processing techniques have been used for 

post classification as (siev, clumb and Majority 
Analysis) to improve overall accuracy and remove 
noisy pixels as well as to enhance the visual 
interpretation of the classified image. Sieving classes 
removes isolated classified pixels using blob grouping. 
Clump classes to clumps adjacent similar classified 
areas together using morphological operators. Use of 
majority/minority analysis applies to a classification 
image. Use majority analysis to change spurious pixels 
within a large single class to that class. The kernel size 
is specified and the center pixel in the kernel will be 
replaced with the class value that represent majority of 
the pixels in the kernel.  

It has been found that the best window size is 
9 by 9 pixels that filter out spurious pixels. From the 
post-classified image, we can see that the visual 
appearance is improved and the distribution of the 
lithological units is enhanced compared with the 
published geological map. 
 

6. CONCLUSIONS 
 

In this study, we used high accurate remote 
sensing data (ASTER spectral bands, ASTER DEM) 
for Wadi Atalla area to emphasize and identify the 
lithological distribution detected of this part of the 
Arabian-Nubian Shield. 

The SVM algorithm was applied to automated 
lithological classification of Wadi Attalah area in 
order to emphasize and discriminate the widely 
exposed rock units (i.e. ophiolitic group, Meatiq 
group, intrusive rocks and Hammamat molasse 
sediments) in Eastern Desert of Egypt for the first 
time using ASTER multispectral data. Several 
digital image processing techniques were used to 
produce ASTER derivative data sets (i.e. DEM, 

PCA and ICA) that contained enhanced information 
related to lithological discrimination. 

Series of SVMs were tested using various 
combinations of input datasets to select the optimal 
inputs that provide the highest classification 
accuracy. We conclude that combination of 9 
ASTER VNIR and SWIR as well as ASTER derived 
PC+IC+DEM provide the highest overall 
classification accuracy of 95% for the widely 
exposed rock units (Table 5). The average accuracy 
calculated for each lithological units of the study 
area using 9 ASTER bands+PC+IC+ DEM datasets 
provide a perfect accuracy for seven lithological 
units (e.g. Serpentinite talc-carbonate rocks, acidic 
metavolcanic tuffs, ophiolitic metagabbro, 
metapasmmite) (Table 4).  

The Image processing of the remote sensing data 
as proposed in the present study can therefore be 
used to produce more accurate distribution for the 
exposed lithological unit than the previous published 
geological map. These results have been verified by 
field work. The classification accuracy for each 
lithological unit demonstrates that the technique can 
be used by exploration companies in such areas for a 
lithological mapping that can be further 
distinguished using field investigation.  

The newly developed methods are used to 
distinguish between ophiolitic rocks which include 
(serpentinite and metagabbro), granitic rocks 
monzogranite/alkali feldspar granite and 
monzodiorite) of the Fawakhir area and Meatiq group 
(amphibolite schist, sericite muscovite garnet schist 
and metapasmmite) as well as Hammamat sediments 
(Greywackes and conglomerate). It is recommended 
using ASTER-PC+IC+DEM SVM for mapping 
serpentinites and to discriminate between the different 
types of granitic rocks, ophiolitic rocks, Meatiq 
group, Attalah felsite and Hammamat molasse 
sediments. Comparison between the results derived 
from the proposed new methods and field work 
demonstrate that the new methods were successful in 
emphasizing the lithological information at Wadi 
Attalah area. Therefore, we suggest that these 
techniques may be used as time - and cost-effective 
approach for lithological feature identification in 
other geologically similar arid regions in the Arabian-
Nubian Shield (ANS) and worldwide. 
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